dslinux/lib/libjpeg Makefile README ansi2knr.1 ansi2knr.c cderror.h cdjpeg.c cdjpeg.h change.log cjpeg.1 cjpeg.c ckconfig.c coderules.doc config.guess config.sub configure djpeg.1 djpeg.c example.c filelist.doc install-sh install.doc jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c jchuff.h jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jconfig.bcc jconfig.cfg jconfig.dj jconfig.doc jconfig.h jconfig.mac jconfig.manx jconfig.mc6 jconfig.sas jconfig.st jconfig.vc jconfig.vms jconfig.wat jcparam.c jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jdct.h jddctmgr.c jdhuff.c jdhuff.h jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c jerror.h jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jinclude.h jmemansi.c jmemdos.c jmemdosa.asm jmemmac.c jmemmgr.c jmemname.c jmemnobs.c jmemsys.h jmorecfg.h jpegint.h jpeglib.h! jpegtran.1 jpegtran.c jquant1.c jquant2.c jutils.c jversion.h libjpeg.doc ltconfig ltmain.sh makcjpeg.st makdjpeg.st makeapps.ds makefile.ansi makefile.bcc makefile.cfg makefile.dj makefile.manx makefile.mc6 makefile.mms makefile.sas makefile.unix makefile.vc makefile.vms makefile.wat makelib.ds makeproj.mac makljpeg.st maktjpeg.st makvms.opt rdbmp.c rdcolmap.c rdgif.c rdjpgcom.1 rdjpgcom.c rdppm.c rdrle.c rdswitch.c rdtarga.c structure.doc testimg.bmp testimg.jpg testimg.ppm testimgp.jpg testorig.jpg testprog.jpg transupp.c transupp.h usage.doc wizard.doc wrbmp.c wrgif.c wrjpgcom.1 wrjpgcom.c wrppm.c wrrle.c wrtarga.c

pepsiman dslinux_pepsiman at user.in-berlin.de
Sat Nov 25 11:06:41 CET 2006


Update of /cvsroot/dslinux/dslinux/lib/libjpeg
In directory antilope:/tmp/cvs-serv15816

Added Files:
	Makefile README ansi2knr.1 ansi2knr.c cderror.h cdjpeg.c 
	cdjpeg.h change.log cjpeg.1 cjpeg.c ckconfig.c coderules.doc 
	config.guess config.sub configure djpeg.1 djpeg.c example.c 
	filelist.doc install-sh install.doc jcapimin.c jcapistd.c 
	jccoefct.c jccolor.c jcdctmgr.c jchuff.c jchuff.h jcinit.c 
	jcmainct.c jcmarker.c jcmaster.c jcomapi.c jconfig.bcc 
	jconfig.cfg jconfig.dj jconfig.doc jconfig.h jconfig.mac 
	jconfig.manx jconfig.mc6 jconfig.sas jconfig.st jconfig.vc 
	jconfig.vms jconfig.wat jcparam.c jcphuff.c jcprepct.c 
	jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c 
	jdatasrc.c jdcoefct.c jdcolor.c jdct.h jddctmgr.c jdhuff.c 
	jdhuff.h jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c 
	jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c jerror.h 
	jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c 
	jidctint.c jidctred.c jinclude.h jmemansi.c jmemdos.c 
	jmemdosa.asm jmemmac.c jmemmgr.c jmemname.c jmemnobs.c 
	jmemsys.h jmorecfg.h jpegint.h jpeglib.h jpegtran.1 jpegtran.c 
	jquant1.c jquant2.c jutils.c jversion.h libjpeg.doc ltconfig 
	ltmain.sh makcjpeg.st makdjpeg.st makeapps.ds makefile.ansi 
	makefile.bcc makefile.cfg makefile.dj makefile.manx 
	makefile.mc6 makefile.mms makefile.sas makefile.unix 
	makefile.vc makefile.vms makefile.wat makelib.ds makeproj.mac 
	makljpeg.st maktjpeg.st makvms.opt rdbmp.c rdcolmap.c rdgif.c 
	rdjpgcom.1 rdjpgcom.c rdppm.c rdrle.c rdswitch.c rdtarga.c 
	structure.doc testimg.bmp testimg.jpg testimg.ppm testimgp.jpg 
	testorig.jpg testprog.jpg transupp.c transupp.h usage.doc 
	wizard.doc wrbmp.c wrgif.c wrjpgcom.1 wrjpgcom.c wrppm.c 
	wrrle.c wrtarga.c 
Log Message:
Merge libjpeg from uclinux_branch

--- NEW FILE: jidctflt.c ---
/*
 * jidctflt.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a floating-point implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * This implementation should be more accurate than either of the integer
 * IDCT implementations.  However, it may not give the same results on all
 * machines because of differences in roundoff behavior.  Speed will depend
 * on the hardware's floating point capacity.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with a fixed-point
 * implementation, accuracy is lost due to imprecise representation of the
 * scaled quantization values.  However, that problem does not arise if
 * we use floating point arithmetic.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_FLOAT_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce a float result.
 */

#define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */

GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z5, z10, z11, z12, z13;
  JCOEFPTR inptr;
  FLOAT_MULT_TYPE * quantptr;
  FAST_FLOAT * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part */

    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp10 = tmp0 + tmp2;	/* phase 3 */
    tmp11 = tmp0 - tmp2;

    tmp13 = tmp1 + tmp3;	/* phases 5-3 */
    tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */

    tmp0 = tmp10 + tmp13;	/* phase 2 */
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;
    
    /* Odd part */

    tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);

    z13 = tmp6 + tmp5;		/* phase 6 */
    z10 = tmp6 - tmp5;
    z11 = tmp4 + tmp7;
    z12 = tmp4 - tmp7;

    tmp7 = z11 + z13;		/* phase 5 */
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */

    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;	/* phase 2 */
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    wsptr[DCTSIZE*0] = tmp0 + tmp7;
    wsptr[DCTSIZE*7] = tmp0 - tmp7;
    wsptr[DCTSIZE*1] = tmp1 + tmp6;
    wsptr[DCTSIZE*6] = tmp1 - tmp6;
    wsptr[DCTSIZE*2] = tmp2 + tmp5;
    wsptr[DCTSIZE*5] = tmp2 - tmp5;
    wsptr[DCTSIZE*4] = tmp3 + tmp4;
    wsptr[DCTSIZE*3] = tmp3 - tmp4;

    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * And testing floats for zero is relatively expensive, so we don't bother.
     */
    
    /* Even part */

    tmp10 = wsptr[0] + wsptr[4];
    tmp11 = wsptr[0] - wsptr[4];

    tmp13 = wsptr[2] + wsptr[6];
    tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;

    tmp0 = tmp10 + tmp13;
    tmp3 = tmp10 - tmp13;
    tmp1 = tmp11 + tmp12;
    tmp2 = tmp11 - tmp12;

    /* Odd part */

    z13 = wsptr[5] + wsptr[3];
    z10 = wsptr[5] - wsptr[3];
    z11 = wsptr[1] + wsptr[7];
    z12 = wsptr[1] - wsptr[7];

    tmp7 = z11 + z13;
    tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);

    z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
    tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */

    tmp6 = tmp12 - tmp7;
    tmp5 = tmp11 - tmp6;
    tmp4 = tmp10 + tmp5;

    /* Final output stage: scale down by a factor of 8 and range-limit */

    outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
			    & RANGE_MASK];
    outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
			    & RANGE_MASK];
    outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
			    & RANGE_MASK];
    outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
			    & RANGE_MASK];
    outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}

#endif /* DCT_FLOAT_SUPPORTED */

--- NEW FILE: makefile.ansi ---
# Makefile for Independent JPEG Group's software

# This makefile is suitable for Unix-like systems with ANSI-capable compilers.
# If you have a non-ANSI compiler, makefile.unix is a better starting point.

# Read installation instructions before saying "make" !!

# The name of your C compiler:
CC= cc

# You may need to adjust these cc options:
CFLAGS= -O
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.

# Link-time cc options:
LDFLAGS= 

# To link any special libraries, add the necessary -l commands here.
LDLIBS= 

# Put here the object file name for the correct system-dependent memory
# manager file.  For Unix this is usually jmemnobs.o, but you may want
# to use jmemansi.o or jmemname.o if you have limited swap space.
SYSDEPMEM= jmemnobs.o

# miscellaneous OS-dependent stuff
# linker
LN= $(CC)
# file deletion command
RM= rm -f
# library (.a) file creation command
AR= ar rc
# second step in .a creation (use "touch" if not needed)
AR2= ranlib

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.o jcapistd.o jctrans.o jcparam.o jdatadst.o jcinit.o \
        jcmaster.o jcmarker.o jcmainct.o jcprepct.o jccoefct.o jccolor.o \
        jcsample.o jchuff.o jcphuff.o jcdctmgr.o jfdctfst.o jfdctflt.o \
        jfdctint.o
# decompression library object files
DLIBOBJECTS= jdapimin.o jdapistd.o jdtrans.o jdatasrc.o jdmaster.o \
        jdinput.o jdmarker.o jdhuff.o jdphuff.o jdmainct.o jdcoefct.o \
        jdpostct.o jddctmgr.o jidctfst.o jidctflt.o jidctint.o jidctred.o \
        jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
# These objectfiles are included in libjpeg.a
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
        cdjpeg.o
DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
        cdjpeg.o
TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o


all: libjpeg.a cjpeg djpeg jpegtran rdjpgcom wrjpgcom

libjpeg.a: $(LIBOBJECTS)
	$(RM) libjpeg.a
	$(AR) libjpeg.a  $(LIBOBJECTS)
	$(AR2) libjpeg.a

cjpeg: $(COBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.a $(LDLIBS)

djpeg: $(DOBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.a $(LDLIBS)

jpegtran: $(TROBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.a $(LDLIBS)

rdjpgcom: rdjpgcom.o
	$(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.o $(LDLIBS)

wrjpgcom: wrjpgcom.o
	$(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.o $(LDLIBS)

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

clean:
	$(RM) *.o cjpeg djpeg jpegtran libjpeg.a rdjpgcom wrjpgcom
	$(RM) core testout*

test: cjpeg djpeg jpegtran
	$(RM) testout*
	./djpeg -dct int -ppm -outfile testout.ppm  testorig.jpg
	./djpeg -dct int -bmp -colors 256 -outfile testout.bmp  testorig.jpg
	./cjpeg -dct int -outfile testout.jpg  testimg.ppm
	./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
	./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
	./jpegtran -outfile testoutt.jpg testprog.jpg
	cmp testimg.ppm testout.ppm
	cmp testimg.bmp testout.bmp
	cmp testimg.jpg testout.jpg
	cmp testimg.ppm testoutp.ppm
	cmp testimgp.jpg testoutp.jpg
	cmp testorig.jpg testoutt.jpg


jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.o: jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.o: jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.o: jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h

--- NEW FILE: config.guess ---
#! /bin/sh
# Attempt to guess a canonical system name.
#   Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.

# Written by Per Bothner <bothner at cygnus.com>.
# The master version of this file is at the FSF in /home/gd/gnu/lib.
#
# This script attempts to guess a canonical system name similar to
# config.sub.  If it succeeds, it prints the system name on stdout, and
# exits with 0.  Otherwise, it exits with 1.
#
# The plan is that this can be called by configure scripts if you
# don't specify an explicit system type (host/target name).
#
# Only a few systems have been added to this list; please add others
# (but try to keep the structure clean).
#

# This is needed to find uname on a Pyramid OSx when run in the BSD universe.
# (ghazi at noc.rutgers.edu 8/24/94.)
if (test -f /.attbin/uname) >/dev/null 2>&1 ; then
	PATH=$PATH:/.attbin ; export PATH
fi

UNAME_MACHINE=`(uname -m) 2>/dev/null` || UNAME_MACHINE=unknown
UNAME_RELEASE=`(uname -r) 2>/dev/null` || UNAME_RELEASE=unknown
UNAME_SYSTEM=`(uname -s) 2>/dev/null` || UNAME_SYSTEM=unknown
UNAME_VERSION=`(uname -v) 2>/dev/null` || UNAME_VERSION=unknown

trap 'rm -f dummy.c dummy.o dummy; exit 1' 1 2 15

# Note: order is significant - the case branches are not exclusive.

case "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" in
    alpha:OSF1:*:*)
	if test $UNAME_RELEASE = "V4.0"; then
		UNAME_RELEASE=`/usr/sbin/sizer -v | awk '{print $3}'`
	fi
	# A Vn.n version is a released version.
	# A Tn.n version is a released field test version.
	# A Xn.n version is an unreleased experimental baselevel.
	# 1.2 uses "1.2" for uname -r.
	cat <<EOF >dummy.s
	.globl main
	.ent main
main:
	.frame \$30,0,\$26,0
	.prologue 0
	.long 0x47e03d80 # implver $0
	lda \$2,259
	.long 0x47e20c21 # amask $2,$1
	srl \$1,8,\$2
	sll \$2,2,\$2
	sll \$0,3,\$0
	addl \$1,\$0,\$0
	addl \$2,\$0,\$0
	ret \$31,(\$26),1
	.end main
EOF
	${CC-cc} dummy.s -o dummy 2>/dev/null
	if test "$?" = 0 ; then
		./dummy
		case "$?" in
			7)
				UNAME_MACHINE="alpha"
				;;
			15)
				UNAME_MACHINE="alphaev5"
				;;
			14)
				UNAME_MACHINE="alphaev56"
				;;
			10)
				UNAME_MACHINE="alphapca56"
				;;
			16)
				UNAME_MACHINE="alphaev6"
				;;
		esac
	fi
	rm -f dummy.s dummy
	echo ${UNAME_MACHINE}-dec-osf`echo ${UNAME_RELEASE} | sed -e 's/^[VTX]//' | tr [[A-Z]] [[a-z]]`
	exit 0 ;;
    21064:Windows_NT:50:3)
	echo alpha-dec-winnt3.5
	exit 0 ;;
    Amiga*:UNIX_System_V:4.0:*)
	echo m68k-cbm-sysv4
	exit 0;;
    amiga:NetBSD:*:*)
      echo m68k-cbm-netbsd${UNAME_RELEASE}
      exit 0 ;;
    amiga:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    arc64:OpenBSD:*:*)
	echo mips64el-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    arc:OpenBSD:*:*)
	echo mipsel-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    hkmips:OpenBSD:*:*)
	echo mips-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    pmax:OpenBSD:*:*)
	echo mipsel-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    sgi:OpenBSD:*:*)
	echo mips-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    wgrisc:OpenBSD:*:*)
	echo mipsel-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    arm:RISC*:1.[012]*:*|arm:riscix:1.[012]*:*)
	echo arm-acorn-riscix${UNAME_RELEASE}
	exit 0;;
    arm32:NetBSD:*:*)
	echo arm-unknown-netbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
	exit 0 ;;
    SR2?01:HI-UX/MPP:*:*)
	echo hppa1.1-hitachi-hiuxmpp
	exit 0;;
    Pyramid*:OSx*:*:*|MIS*:OSx*:*:*)
	# akee at wpdis03.wpafb.af.mil (Earle F. Ake) contributed MIS and NILE.
	if test "`(/bin/universe) 2>/dev/null`" = att ; then
		echo pyramid-pyramid-sysv3
	else
		echo pyramid-pyramid-bsd
	fi
	exit 0 ;;
    NILE:*:*:dcosx)
	echo pyramid-pyramid-svr4
	exit 0 ;;
    sun4*:SunOS:5.*:* | tadpole*:SunOS:5.*:*)
	echo sparc-sun-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit 0 ;;
    i86pc:SunOS:5.*:*)
	echo i386-pc-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit 0 ;;
    sun4*:SunOS:6*:*)
	# According to config.sub, this is the proper way to canonicalize
	# SunOS6.  Hard to guess exactly what SunOS6 will be like, but
	# it's likely to be more like Solaris than SunOS4.
	echo sparc-sun-solaris3`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit 0 ;;
    sun4*:SunOS:*:*)
	case "`/usr/bin/arch -k`" in
	    Series*|S4*)
		UNAME_RELEASE=`uname -v`
		;;
	esac
	# Japanese Language versions have a version number like `4.1.3-JL'.
	echo sparc-sun-sunos`echo ${UNAME_RELEASE}|sed -e 's/-/_/'`
	exit 0 ;;
    sun3*:SunOS:*:*)
	echo m68k-sun-sunos${UNAME_RELEASE}
	exit 0 ;;
    sun*:*:4.2BSD:*)
	UNAME_RELEASE=`(head -1 /etc/motd | awk '{print substr($5,1,3)}') 2>/dev/null`
	test "x${UNAME_RELEASE}" = "x" && UNAME_RELEASE=3
	case "`/bin/arch`" in
	    sun3)
		echo m68k-sun-sunos${UNAME_RELEASE}
		;;
	    sun4)
		echo sparc-sun-sunos${UNAME_RELEASE}
		;;
	esac
	exit 0 ;;
    aushp:SunOS:*:*)
	echo sparc-auspex-sunos${UNAME_RELEASE}
	exit 0 ;;
    atari*:NetBSD:*:*)
	echo m68k-atari-netbsd${UNAME_RELEASE}
	exit 0 ;;
    atari*:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    sun3*:NetBSD:*:*)
	echo m68k-sun-netbsd${UNAME_RELEASE}
	exit 0 ;;
    sun3*:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    mac68k:NetBSD:*:*)
	echo m68k-apple-netbsd${UNAME_RELEASE}
	exit 0 ;;
    mac68k:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    mvme68k:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    mvme88k:OpenBSD:*:*)
	echo m88k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    powerpc:machten:*:*)
	echo powerpc-apple-machten${UNAME_RELEASE}
	exit 0 ;;
    RISC*:Mach:*:*)
	echo mips-dec-mach_bsd4.3
	exit 0 ;;
    RISC*:ULTRIX:*:*)
	echo mips-dec-ultrix${UNAME_RELEASE}
	exit 0 ;;
    VAX*:ULTRIX*:*:*)
	echo vax-dec-ultrix${UNAME_RELEASE}
	exit 0 ;;
    2020:CLIX:*:*)
	echo clipper-intergraph-clix${UNAME_RELEASE}
	exit 0 ;;
    mips:*:*:UMIPS | mips:*:*:RISCos)
	sed 's/^	//' << EOF >dummy.c
	int main (argc, argv) int argc; char **argv; {
	#if defined (host_mips) && defined (MIPSEB)
	#if defined (SYSTYPE_SYSV)
	  printf ("mips-mips-riscos%ssysv\n", argv[1]); exit (0);
	#endif
	#if defined (SYSTYPE_SVR4)
	  printf ("mips-mips-riscos%ssvr4\n", argv[1]); exit (0);
	#endif
	#if defined (SYSTYPE_BSD43) || defined(SYSTYPE_BSD)
	  printf ("mips-mips-riscos%sbsd\n", argv[1]); exit (0);
	#endif
	#endif
	  exit (-1);
	}
EOF
	${CC-cc} dummy.c -o dummy \
	  && ./dummy `echo "${UNAME_RELEASE}" | sed -n 's/\([0-9]*\).*/\1/p'` \
	  && rm dummy.c dummy && exit 0
	rm -f dummy.c dummy
	echo mips-mips-riscos${UNAME_RELEASE}
	exit 0 ;;
    Night_Hawk:Power_UNIX:*:*)
	echo powerpc-harris-powerunix
	exit 0 ;;
    m88k:CX/UX:7*:*)
	echo m88k-harris-cxux7
	exit 0 ;;
    m88k:*:4*:R4*)
	echo m88k-motorola-sysv4
	exit 0 ;;
    m88k:*:3*:R3*)
	echo m88k-motorola-sysv3
	exit 0 ;;
    AViiON:dgux:*:*)
        # DG/UX returns AViiON for all architectures
        UNAME_PROCESSOR=`/usr/bin/uname -p`
        if [ $UNAME_PROCESSOR = mc88100 -o $UNAME_PROCESSOR = mc88110 ] ; then
	if [ ${TARGET_BINARY_INTERFACE}x = m88kdguxelfx \
	     -o ${TARGET_BINARY_INTERFACE}x = x ] ; then
		echo m88k-dg-dgux${UNAME_RELEASE}
	else
		echo m88k-dg-dguxbcs${UNAME_RELEASE}
	fi
        else echo i586-dg-dgux${UNAME_RELEASE}
        fi
 	exit 0 ;;
    M88*:DolphinOS:*:*)	# DolphinOS (SVR3)
	echo m88k-dolphin-sysv3
	exit 0 ;;
    M88*:*:R3*:*)
	# Delta 88k system running SVR3
	echo m88k-motorola-sysv3
	exit 0 ;;
    XD88*:*:*:*) # Tektronix XD88 system running UTekV (SVR3)
	echo m88k-tektronix-sysv3
	exit 0 ;;
    Tek43[0-9][0-9]:UTek:*:*) # Tektronix 4300 system running UTek (BSD)
	echo m68k-tektronix-bsd
	exit 0 ;;
    *:IRIX*:*:*)
	echo mips-sgi-irix`echo ${UNAME_RELEASE}|sed -e 's/-/_/g'`
	exit 0 ;;
    ????????:AIX?:[12].1:2)   # AIX 2.2.1 or AIX 2.1.1 is RT/PC AIX.
	echo romp-ibm-aix      # uname -m gives an 8 hex-code CPU id
	exit 0 ;;              # Note that: echo "'`uname -s`'" gives 'AIX '
    i?86:AIX:*:*)
	echo i386-ibm-aix
	exit 0 ;;
    *:AIX:2:3)
	if grep bos325 /usr/include/stdio.h >/dev/null 2>&1; then
		sed 's/^		//' << EOF >dummy.c
		#include <sys/systemcfg.h>

		main()
			{
			if (!__power_pc())
				exit(1);
			puts("powerpc-ibm-aix3.2.5");
			exit(0);
			}
EOF
		${CC-cc} dummy.c -o dummy && ./dummy && rm dummy.c dummy && exit 0
		rm -f dummy.c dummy
		echo rs6000-ibm-aix3.2.5
	elif grep bos324 /usr/include/stdio.h >/dev/null 2>&1; then
		echo rs6000-ibm-aix3.2.4
	else
		echo rs6000-ibm-aix3.2
	fi
	exit 0 ;;
    *:AIX:*:4)
	if /usr/sbin/lsattr -EHl proc0 | grep POWER >/dev/null 2>&1; then
		IBM_ARCH=rs6000
	else
		IBM_ARCH=powerpc
	fi
	if [ -x /usr/bin/oslevel ] ; then
		IBM_REV=`/usr/bin/oslevel`
	else
		IBM_REV=4.${UNAME_RELEASE}
	fi
	echo ${IBM_ARCH}-ibm-aix${IBM_REV}
	exit 0 ;;
    *:AIX:*:*)
	echo rs6000-ibm-aix
	exit 0 ;;
    ibmrt:4.4BSD:*|romp-ibm:BSD:*)
	echo romp-ibm-bsd4.4
	exit 0 ;;
    ibmrt:*BSD:*|romp-ibm:BSD:*)            # covers RT/PC NetBSD and
	echo romp-ibm-bsd${UNAME_RELEASE}   # 4.3 with uname added to
	exit 0 ;;                           # report: romp-ibm BSD 4.3
    *:BOSX:*:*)
	echo rs6000-bull-bosx
	exit 0 ;;
    DPX/2?00:B.O.S.:*:*)
	echo m68k-bull-sysv3
	exit 0 ;;
    9000/[34]??:4.3bsd:1.*:*)
	echo m68k-hp-bsd
	exit 0 ;;
    hp300:4.4BSD:*:* | 9000/[34]??:4.3bsd:2.*:*)
	echo m68k-hp-bsd4.4
	exit 0 ;;
    9000/[3478]??:HP-UX:*:*)
	case "${UNAME_MACHINE}" in
	    9000/31? )            HP_ARCH=m68000 ;;
	    9000/[34]?? )         HP_ARCH=m68k ;;
	    9000/7?? | 9000/8?[1679] ) HP_ARCH=hppa1.1 ;;
	    9000/8?? )            HP_ARCH=hppa1.0 ;;
	esac
	HPUX_REV=`echo ${UNAME_RELEASE}|sed -e 's/[^.]*.[0B]*//'`
	echo ${HP_ARCH}-hp-hpux${HPUX_REV}
	exit 0 ;;
    3050*:HI-UX:*:*)
	sed 's/^	//' << EOF >dummy.c
	#include <unistd.h>
	int
	main ()
	{
	  long cpu = sysconf (_SC_CPU_VERSION);
	  /* The order matters, because CPU_IS_HP_MC68K erroneously returns
	     true for CPU_PA_RISC1_0.  CPU_IS_PA_RISC returns correct
	     results, however.  */
	  if (CPU_IS_PA_RISC (cpu))
	    {
	      switch (cpu)
		{
		  case CPU_PA_RISC1_0: puts ("hppa1.0-hitachi-hiuxwe2"); break;
		  case CPU_PA_RISC1_1: puts ("hppa1.1-hitachi-hiuxwe2"); break;
		  case CPU_PA_RISC2_0: puts ("hppa2.0-hitachi-hiuxwe2"); break;
		  default: puts ("hppa-hitachi-hiuxwe2"); break;
		}
	    }
	  else if (CPU_IS_HP_MC68K (cpu))
	    puts ("m68k-hitachi-hiuxwe2");
	  else puts ("unknown-hitachi-hiuxwe2");
	  exit (0);
	}
EOF
	${CC-cc} dummy.c -o dummy && ./dummy && rm dummy.c dummy && exit 0
	rm -f dummy.c dummy
	echo unknown-hitachi-hiuxwe2
	exit 0 ;;
    9000/7??:4.3bsd:*:* | 9000/8?[79]:4.3bsd:*:* )
	echo hppa1.1-hp-bsd
	exit 0 ;;
    9000/8??:4.3bsd:*:*)
	echo hppa1.0-hp-bsd
	exit 0 ;;
    hp7??:OSF1:*:* | hp8?[79]:OSF1:*:* )
	echo hppa1.1-hp-osf
	exit 0 ;;
    hp8??:OSF1:*:*)
	echo hppa1.0-hp-osf
	exit 0 ;;
    i?86:OSF1:*:*)
	if [ -x /usr/sbin/sysversion ] ; then
	    echo ${UNAME_MACHINE}-unknown-osf1mk
	else
	    echo ${UNAME_MACHINE}-unknown-osf1
	fi
	exit 0 ;;
    parisc*:Lites*:*:*)
	echo hppa1.1-hp-lites
	exit 0 ;;
    C1*:ConvexOS:*:* | convex:ConvexOS:C1*:*)
	echo c1-convex-bsd
        exit 0 ;;
    C2*:ConvexOS:*:* | convex:ConvexOS:C2*:*)
	if getsysinfo -f scalar_acc
	then echo c32-convex-bsd
	else echo c2-convex-bsd
	fi
        exit 0 ;;
    C34*:ConvexOS:*:* | convex:ConvexOS:C34*:*)
	echo c34-convex-bsd
        exit 0 ;;
    C38*:ConvexOS:*:* | convex:ConvexOS:C38*:*)
	echo c38-convex-bsd
        exit 0 ;;
    C4*:ConvexOS:*:* | convex:ConvexOS:C4*:*)
	echo c4-convex-bsd
        exit 0 ;;
    CRAY*X-MP:*:*:*)
	echo xmp-cray-unicos
        exit 0 ;;
    CRAY*Y-MP:*:*:*)
	echo ymp-cray-unicos${UNAME_RELEASE}
	exit 0 ;;
    CRAY*[A-Z]90:*:*:*)
	echo ${UNAME_MACHINE}-cray-unicos${UNAME_RELEASE} \
	| sed -e 's/CRAY.*\([A-Z]90\)/\1/' \
	      -e y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/
	exit 0 ;;
    CRAY*TS:*:*:*)
	echo t90-cray-unicos${UNAME_RELEASE}
	exit 0 ;;
    CRAY-2:*:*:*)
	echo cray2-cray-unicos
        exit 0 ;;
    F300:UNIX_System_V:*:*)
        FUJITSU_SYS=`uname -p | tr [A-Z] [a-z] | sed -e 's/\///'`
        FUJITSU_REL=`echo ${UNAME_RELEASE} | sed -e 's/ /_/'`
        echo "f300-fujitsu-${FUJITSU_SYS}${FUJITSU_REL}"
        exit 0 ;;
    F301:UNIX_System_V:*:*)
       echo f301-fujitsu-uxpv`echo $UNAME_RELEASE | sed 's/ .*//'`
       exit 0 ;;
    hp3[0-9][05]:NetBSD:*:*)
	echo m68k-hp-netbsd${UNAME_RELEASE}
	exit 0 ;;
    hp300:OpenBSD:*:*)
	echo m68k-unknown-openbsd${UNAME_RELEASE}
	exit 0 ;;
    i?86:BSD/386:*:* | *:BSD/OS:*:*)
	echo ${UNAME_MACHINE}-pc-bsdi${UNAME_RELEASE}
	exit 0 ;;
    *:FreeBSD:*:*)
	echo ${UNAME_MACHINE}-unknown-freebsd`echo ${UNAME_RELEASE}|sed -e 's/[-(].*//'`
	exit 0 ;;
    *:NetBSD:*:*)
	echo ${UNAME_MACHINE}-unknown-netbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
	exit 0 ;;
    *:OpenBSD:*:*)
	echo ${UNAME_MACHINE}-unknown-openbsd`echo ${UNAME_RELEASE}|sed -e 's/[-_].*/\./'`
	exit 0 ;;
    i*:CYGWIN*:*)
	echo i386-pc-cygwin32
	exit 0 ;;
    i*:MINGW*:*)
	echo i386-pc-mingw32
	exit 0 ;;
    p*:CYGWIN*:*)
	echo powerpcle-unknown-cygwin32
	exit 0 ;;
    prep*:SunOS:5.*:*)
	echo powerpcle-unknown-solaris2`echo ${UNAME_RELEASE}|sed -e 's/[^.]*//'`
	exit 0 ;;
    *:GNU:*:*)
	echo `echo ${UNAME_MACHINE}|sed -e 's,[-/].*$,,'`-unknown-gnu`echo ${UNAME_RELEASE}|sed -e 's,/.*$,,'`
	exit 0 ;;
    *:Linux:*:*)
	# The BFD linker knows what the default object file format is, so
	# first see if it will tell us.
	ld_help_string=`ld --help 2>&1`
	ld_supported_emulations=`echo $ld_help_string \
			 | sed -ne '/supported emulations:/!d
				    s/[ 	][ 	]*/ /g
				    s/.*supported emulations: *//
				    s/ .*//
				    p'`
        case "$ld_supported_emulations" in
	  i?86linux)  echo "${UNAME_MACHINE}-pc-linux-gnuaout"      ; exit 0 ;;
	  i?86coff)   echo "${UNAME_MACHINE}-pc-linux-gnucoff"      ; exit 0 ;;
	  sparclinux) echo "${UNAME_MACHINE}-unknown-linux-gnuaout" ; exit 0 ;;
	  m68klinux)  echo "${UNAME_MACHINE}-unknown-linux-gnuaout" ; exit 0 ;;
	  elf32ppc)   echo "powerpc-unknown-linux-gnu"              ; exit 0 ;;
	esac

	if test "${UNAME_MACHINE}" = "alpha" ; then
		sed 's/^	//'  <<EOF >dummy.s
		.globl main
		.ent main
	main:
		.frame \$30,0,\$26,0
		.prologue 0
		.long 0x47e03d80 # implver $0
		lda \$2,259
		.long 0x47e20c21 # amask $2,$1
		srl \$1,8,\$2
		sll \$2,2,\$2
		sll \$0,3,\$0
		addl \$1,\$0,\$0
		addl \$2,\$0,\$0
		ret \$31,(\$26),1
		.end main
EOF
		LIBC=""
		${CC-cc} dummy.s -o dummy 2>/dev/null
		if test "$?" = 0 ; then
			./dummy
			case "$?" in
			7)
				UNAME_MACHINE="alpha"
				;;
			15)
				UNAME_MACHINE="alphaev5"
				;;
			14)
				UNAME_MACHINE="alphaev56"
				;;
			10)
				UNAME_MACHINE="alphapca56"
				;;
			16)
				UNAME_MACHINE="alphaev6"
				;;
			esac	

			objdump --private-headers dummy | \
			  grep ld.so.1 > /dev/null
			if test "$?" = 0 ; then
				LIBC="libc1"
			fi
		fi	
		rm -f dummy.s dummy
		echo ${UNAME_MACHINE}-unknown-linux-gnu${LIBC} ; exit 0
	elif test "${UNAME_MACHINE}" = "mips" ; then
	  cat >dummy.c <<EOF
main(argc, argv)
     int argc;
     char *argv[];
{
#ifdef __MIPSEB__
  printf ("%s-unknown-linux-gnu\n", argv[1]);
#endif
#ifdef __MIPSEL__
  printf ("%sel-unknown-linux-gnu\n", argv[1]);
#endif
  return 0;
}
EOF
	  ${CC-cc} dummy.c -o dummy 2>/dev/null && ./dummy "${UNAME_MACHINE}" && rm dummy.c dummy && exit 0
	  rm -f dummy.c dummy
	else
	  # Either a pre-BFD a.out linker (linux-gnuoldld)
	  # or one that does not give us useful --help.
	  # GCC wants to distinguish between linux-gnuoldld and linux-gnuaout.
	  # If ld does not provide *any* "supported emulations:"
	  # that means it is gnuoldld.
	  echo "$ld_help_string" | grep >/dev/null 2>&1 "supported emulations:"
	  test $? != 0 && echo "${UNAME_MACHINE}-pc-linux-gnuoldld" && exit 0

	  case "${UNAME_MACHINE}" in
	  i?86)
	    VENDOR=pc;
	    ;;
	  *)
	    VENDOR=unknown;
	    ;;
	  esac
	  # Determine whether the default compiler is a.out or elf
	  cat >dummy.c <<EOF
#include <features.h>
main(argc, argv)
     int argc;
     char *argv[];
{
#ifdef __ELF__
# ifdef __GLIBC__
#  if __GLIBC__ >= 2
    printf ("%s-${VENDOR}-linux-gnu\n", argv[1]);
#  else
    printf ("%s-${VENDOR}-linux-gnulibc1\n", argv[1]);
#  endif
# else
   printf ("%s-${VENDOR}-linux-gnulibc1\n", argv[1]);
# endif
#else
  printf ("%s-${VENDOR}-linux-gnuaout\n", argv[1]);
#endif
  return 0;
}
EOF
	  ${CC-cc} dummy.c -o dummy 2>/dev/null && ./dummy "${UNAME_MACHINE}" && rm dummy.c dummy && exit 0
	  rm -f dummy.c dummy
	fi ;;
# ptx 4.0 does uname -s correctly, with DYNIX/ptx in there.  earlier versions
# are messed up and put the nodename in both sysname and nodename.
    i?86:DYNIX/ptx:4*:*)
	echo i386-sequent-sysv4
	exit 0 ;;
    i?86:UNIX_SV:4.2MP:2.*)
        # Unixware is an offshoot of SVR4, but it has its own version
        # number series starting with 2...
        # I am not positive that other SVR4 systems won't match this,
	# I just have to hope.  -- rms.
        # Use sysv4.2uw... so that sysv4* matches it.
	echo ${UNAME_MACHINE}-pc-sysv4.2uw${UNAME_VERSION}
	exit 0 ;;
    i?86:*:4.*:* | i?86:SYSTEM_V:4.*:*)
	if grep Novell /usr/include/link.h >/dev/null 2>/dev/null; then
		echo ${UNAME_MACHINE}-univel-sysv${UNAME_RELEASE}
	else
		echo ${UNAME_MACHINE}-pc-sysv${UNAME_RELEASE}
	fi
	exit 0 ;;
    i?86:*:3.2:*)
	if test -f /usr/options/cb.name; then
		UNAME_REL=`sed -n 's/.*Version //p' </usr/options/cb.name`
		echo ${UNAME_MACHINE}-pc-isc$UNAME_REL
	elif /bin/uname -X 2>/dev/null >/dev/null ; then
		UNAME_REL=`(/bin/uname -X|egrep Release|sed -e 's/.*= //')`
		(/bin/uname -X|egrep i80486 >/dev/null) && UNAME_MACHINE=i486
		(/bin/uname -X|egrep '^Machine.*Pentium' >/dev/null) \
			&& UNAME_MACHINE=i586
		echo ${UNAME_MACHINE}-pc-sco$UNAME_REL
	else
		echo ${UNAME_MACHINE}-pc-sysv32
	fi
	exit 0 ;;
    pc:*:*:*)
        # uname -m prints for DJGPP always 'pc', but it prints nothing about
        # the processor, so we play safe by assuming i386.
	echo i386-pc-msdosdjgpp
        exit 0 ;;
    Intel:Mach:3*:*)
	echo i386-pc-mach3
	exit 0 ;;
    paragon:*:*:*)
	echo i860-intel-osf1
	exit 0 ;;
    i860:*:4.*:*) # i860-SVR4
	if grep Stardent /usr/include/sys/uadmin.h >/dev/null 2>&1 ; then
	  echo i860-stardent-sysv${UNAME_RELEASE} # Stardent Vistra i860-SVR4
	else # Add other i860-SVR4 vendors below as they are discovered.
	  echo i860-unknown-sysv${UNAME_RELEASE}  # Unknown i860-SVR4
	fi
	exit 0 ;;
    mini*:CTIX:SYS*5:*)
	# "miniframe"
	echo m68010-convergent-sysv
	exit 0 ;;
    M68*:*:R3V[567]*:*)
	test -r /sysV68 && echo 'm68k-motorola-sysv' && exit 0 ;;
    3[34]??:*:4.0:3.0 | 3[34]??,*:*:4.0:3.0 | 4850:*:4.0:3.0)
	OS_REL=''
	test -r /etc/.relid \
	&& OS_REL=.`sed -n 's/[^ ]* [^ ]* \([0-9][0-9]\).*/\1/p' < /etc/.relid`
	/bin/uname -p 2>/dev/null | grep 86 >/dev/null \
	  && echo i486-ncr-sysv4.3${OS_REL} && exit 0
	/bin/uname -p 2>/dev/null | /bin/grep entium >/dev/null \
	  && echo i586-ncr-sysv4.3${OS_REL} && exit 0 ;;
    3[34]??:*:4.0:* | 3[34]??,*:*:4.0:*)
        /bin/uname -p 2>/dev/null | grep 86 >/dev/null \
          && echo i486-ncr-sysv4 && exit 0 ;;
    m68*:LynxOS:2.*:*)
	echo m68k-unknown-lynxos${UNAME_RELEASE}
	exit 0 ;;
    mc68030:UNIX_System_V:4.*:*)
	echo m68k-atari-sysv4
	exit 0 ;;
    i?86:LynxOS:2.*:*)
	echo i386-unknown-lynxos${UNAME_RELEASE}
	exit 0 ;;
    TSUNAMI:LynxOS:2.*:*)
	echo sparc-unknown-lynxos${UNAME_RELEASE}
	exit 0 ;;
    rs6000:LynxOS:2.*:* | PowerPC:LynxOS:2.*:*)
	echo rs6000-unknown-lynxos${UNAME_RELEASE}
	exit 0 ;;
    SM[BE]S:UNIX_SV:*:*)
	echo mips-dde-sysv${UNAME_RELEASE}
	exit 0 ;;
    RM*:SINIX-*:*:*)
	echo mips-sni-sysv4
	exit 0 ;;
    *:SINIX-*:*:*)
	if uname -p 2>/dev/null >/dev/null ; then
		UNAME_MACHINE=`(uname -p) 2>/dev/null`
		echo ${UNAME_MACHINE}-sni-sysv4
	else
		echo ns32k-sni-sysv
	fi
	exit 0 ;;
    PENTIUM:CPunix:4.0*:*) # Unisys `ClearPath HMP IX 4000' SVR4/MP effort
                           # says <Richard.M.Bartel at ccMail.Census.GOV>
        echo i586-unisys-sysv4
        exit 0 ;;
    *:UNIX_System_V:4*:FTX*)
	# From Gerald Hewes <hewes at openmarket.com>.
	# How about differentiating between stratus architectures? -djm
	echo hppa1.1-stratus-sysv4
	exit 0 ;;
    *:*:*:FTX*)
	# From seanf at swdc.stratus.com.
	echo i860-stratus-sysv4
	exit 0 ;;
    mc68*:A/UX:*:*)
	echo m68k-apple-aux${UNAME_RELEASE}
	exit 0 ;;
    news*:NEWS-OS:*:6*)
	echo mips-sony-newsos6
	exit 0 ;;
    R3000:*System_V*:*:* | R4000:UNIX_SYSV:*:*)
	if [ -d /usr/nec ]; then
	        echo mips-nec-sysv${UNAME_RELEASE}
	else
	        echo mips-unknown-sysv${UNAME_RELEASE}
	fi
        exit 0 ;;
esac

#echo '(No uname command or uname output not recognized.)' 1>&2
#echo "${UNAME_MACHINE}:${UNAME_SYSTEM}:${UNAME_RELEASE}:${UNAME_VERSION}" 1>&2

cat >dummy.c <<EOF
#ifdef _SEQUENT_
# include <sys/types.h>
# include <sys/utsname.h>
#endif
main ()
{
#if defined (sony)
#if defined (MIPSEB)
  /* BFD wants "bsd" instead of "newsos".  Perhaps BFD should be changed,
     I don't know....  */
  printf ("mips-sony-bsd\n"); exit (0);
#else
#include <sys/param.h>
  printf ("m68k-sony-newsos%s\n",
#ifdef NEWSOS4
          "4"
#else
	  ""
#endif
         ); exit (0);
#endif
#endif

#if defined (__arm) && defined (__acorn) && defined (__unix)
  printf ("arm-acorn-riscix"); exit (0);
#endif

#if defined (hp300) && !defined (hpux)
  printf ("m68k-hp-bsd\n"); exit (0);
#endif

#if defined (NeXT)
#if !defined (__ARCHITECTURE__)
#define __ARCHITECTURE__ "m68k"
#endif
  int version;
  version=`(hostinfo | sed -n 's/.*NeXT Mach \([0-9]*\).*/\1/p') 2>/dev/null`;
  printf ("%s-next-nextstep%d\n", __ARCHITECTURE__, version);
  exit (0);
#endif

#if defined (MULTIMAX) || defined (n16)
#if defined (UMAXV)
  printf ("ns32k-encore-sysv\n"); exit (0);
#else
#if defined (CMU)
  printf ("ns32k-encore-mach\n"); exit (0);
#else
  printf ("ns32k-encore-bsd\n"); exit (0);
#endif
#endif
#endif

#if defined (__386BSD__)
  printf ("i386-pc-bsd\n"); exit (0);
#endif

#if defined (sequent)
#if defined (i386)
  printf ("i386-sequent-dynix\n"); exit (0);
#endif
#if defined (ns32000)
  printf ("ns32k-sequent-dynix\n"); exit (0);
#endif
#endif

#if defined (_SEQUENT_)
    struct utsname un;

    uname(&un);

    if (strncmp(un.version, "V2", 2) == 0) {
	printf ("i386-sequent-ptx2\n"); exit (0);
    }
    if (strncmp(un.version, "V1", 2) == 0) { /* XXX is V1 correct? */
	printf ("i386-sequent-ptx1\n"); exit (0);
    }
    printf ("i386-sequent-ptx\n"); exit (0);

#endif

#if defined (vax)
#if !defined (ultrix)
  printf ("vax-dec-bsd\n"); exit (0);
#else
  printf ("vax-dec-ultrix\n"); exit (0);
#endif
#endif

#if defined (alliant) && defined (i860)
  printf ("i860-alliant-bsd\n"); exit (0);
#endif

  exit (1);
}
EOF

${CC-cc} dummy.c -o dummy 2>/dev/null && ./dummy && rm dummy.c dummy && exit 0
rm -f dummy.c dummy

# Apollos put the system type in the environment.

test -d /usr/apollo && { echo ${ISP}-apollo-${SYSTYPE}; exit 0; }

# Convex versions that predate uname can use getsysinfo(1)

if [ -x /usr/convex/getsysinfo ]
then
    case `getsysinfo -f cpu_type` in
    c1*)
	echo c1-convex-bsd
	exit 0 ;;
    c2*)
	if getsysinfo -f scalar_acc
	then echo c32-convex-bsd
	else echo c2-convex-bsd
	fi
	exit 0 ;;
    c34*)
	echo c34-convex-bsd
	exit 0 ;;
    c38*)
	echo c38-convex-bsd
	exit 0 ;;
    c4*)
	echo c4-convex-bsd
	exit 0 ;;
    esac
fi

#echo '(Unable to guess system type)' 1>&2

exit 1

--- NEW FILE: cdjpeg.h ---
/*
 * cdjpeg.h
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains common declarations for the sample applications
 * cjpeg and djpeg.  It is NOT used by the core JPEG library.
 */

#define JPEG_CJPEG_DJPEG	/* define proper options in jconfig.h */
#define JPEG_INTERNAL_OPTIONS	/* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"		/* get library error codes too */
#include "cderror.h"		/* get application-specific error codes */


/*
 * Object interface for cjpeg's source file decoding modules
 */

typedef struct cjpeg_source_struct * cjpeg_source_ptr;

struct cjpeg_source_struct {
  JMETHOD(void, start_input, (j_compress_ptr cinfo,
			      cjpeg_source_ptr sinfo));
  JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
				       cjpeg_source_ptr sinfo));
  JMETHOD(void, finish_input, (j_compress_ptr cinfo,
			       cjpeg_source_ptr sinfo));

  FILE *input_file;

  JSAMPARRAY buffer;
  JDIMENSION buffer_height;
};


/*
 * Object interface for djpeg's output file encoding modules
 */

typedef struct djpeg_dest_struct * djpeg_dest_ptr;

struct djpeg_dest_struct {
  /* start_output is called after jpeg_start_decompress finishes.
   * The color map will be ready at this time, if one is needed.
   */
  JMETHOD(void, start_output, (j_decompress_ptr cinfo,
			       djpeg_dest_ptr dinfo));
  /* Emit the specified number of pixel rows from the buffer. */
  JMETHOD(void, put_pixel_rows, (j_decompress_ptr cinfo,
				 djpeg_dest_ptr dinfo,
				 JDIMENSION rows_supplied));
  /* Finish up at the end of the image. */
  JMETHOD(void, finish_output, (j_decompress_ptr cinfo,
				djpeg_dest_ptr dinfo));

  /* Target file spec; filled in by djpeg.c after object is created. */
  FILE * output_file;

  /* Output pixel-row buffer.  Created by module init or start_output.
   * Width is cinfo->output_width * cinfo->output_components;
   * height is buffer_height.
   */
  JSAMPARRAY buffer;
  JDIMENSION buffer_height;
};


/*
 * cjpeg/djpeg may need to perform extra passes to convert to or from
 * the source/destination file format.  The JPEG library does not know
 * about these passes, but we'd like them to be counted by the progress
 * monitor.  We use an expanded progress monitor object to hold the
 * additional pass count.
 */

struct cdjpeg_progress_mgr {
  struct jpeg_progress_mgr pub;	/* fields known to JPEG library */
  int completed_extra_passes;	/* extra passes completed */
  int total_extra_passes;	/* total extra */
  /* last printed percentage stored here to avoid multiple printouts */
  int percent_done;
};

typedef struct cdjpeg_progress_mgr * cd_progress_ptr;


/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jinit_read_bmp		jIRdBMP
#define jinit_write_bmp		jIWrBMP
#define jinit_read_gif		jIRdGIF
#define jinit_write_gif		jIWrGIF
#define jinit_read_ppm		jIRdPPM
#define jinit_write_ppm		jIWrPPM
#define jinit_read_rle		jIRdRLE
#define jinit_write_rle		jIWrRLE
#define jinit_read_targa	jIRdTarga
#define jinit_write_targa	jIWrTarga
#define read_quant_tables	RdQTables
#define read_scan_script	RdScnScript
#define set_quant_slots		SetQSlots
#define set_sample_factors	SetSFacts
#define read_color_map		RdCMap
#define enable_signal_catcher	EnSigCatcher
#define start_progress_monitor	StProgMon
#define end_progress_monitor	EnProgMon
#define read_stdin		RdStdin
#define write_stdout		WrStdout
#endif /* NEED_SHORT_EXTERNAL_NAMES */

/* Module selection routines for I/O modules. */

EXTERN(cjpeg_source_ptr) jinit_read_bmp JPP((j_compress_ptr cinfo));
EXTERN(djpeg_dest_ptr) jinit_write_bmp JPP((j_decompress_ptr cinfo,
					    boolean is_os2));
EXTERN(cjpeg_source_ptr) jinit_read_gif JPP((j_compress_ptr cinfo));
EXTERN(djpeg_dest_ptr) jinit_write_gif JPP((j_decompress_ptr cinfo));
EXTERN(cjpeg_source_ptr) jinit_read_ppm JPP((j_compress_ptr cinfo));
EXTERN(djpeg_dest_ptr) jinit_write_ppm JPP((j_decompress_ptr cinfo));
EXTERN(cjpeg_source_ptr) jinit_read_rle JPP((j_compress_ptr cinfo));
EXTERN(djpeg_dest_ptr) jinit_write_rle JPP((j_decompress_ptr cinfo));
EXTERN(cjpeg_source_ptr) jinit_read_targa JPP((j_compress_ptr cinfo));
EXTERN(djpeg_dest_ptr) jinit_write_targa JPP((j_decompress_ptr cinfo));

/* cjpeg support routines (in rdswitch.c) */

EXTERN(boolean) read_quant_tables JPP((j_compress_ptr cinfo, char * filename,
				    int scale_factor, boolean force_baseline));
EXTERN(boolean) read_scan_script JPP((j_compress_ptr cinfo, char * filename));
EXTERN(boolean) set_quant_slots JPP((j_compress_ptr cinfo, char *arg));
EXTERN(boolean) set_sample_factors JPP((j_compress_ptr cinfo, char *arg));

/* djpeg support routines (in rdcolmap.c) */

EXTERN(void) read_color_map JPP((j_decompress_ptr cinfo, FILE * infile));

/* common support routines (in cdjpeg.c) */

EXTERN(void) enable_signal_catcher JPP((j_common_ptr cinfo));
EXTERN(void) start_progress_monitor JPP((j_common_ptr cinfo,
					 cd_progress_ptr progress));
EXTERN(void) end_progress_monitor JPP((j_common_ptr cinfo));
EXTERN(boolean) keymatch JPP((char * arg, const char * keyword, int minchars));
EXTERN(FILE *) read_stdin JPP((void));
EXTERN(FILE *) write_stdout JPP((void));

/* miscellaneous useful macros */

#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */
#define READ_BINARY	"r"
#define WRITE_BINARY	"w"
#else
#ifdef VMS			/* VMS is very nonstandard */
#define READ_BINARY	"rb", "ctx=stm"
#define WRITE_BINARY	"wb", "ctx=stm"
#else				/* standard ANSI-compliant case */
#define READ_BINARY	"rb"
#define WRITE_BINARY	"wb"
#endif
#endif

#ifndef EXIT_FAILURE		/* define exit() codes if not provided */
#define EXIT_FAILURE  1
#endif
#ifndef EXIT_SUCCESS
#ifdef VMS
#define EXIT_SUCCESS  1		/* VMS is very nonstandard */
#else
#define EXIT_SUCCESS  0
#endif
#endif
#ifndef EXIT_WARNING
#ifdef VMS
#define EXIT_WARNING  1		/* VMS is very nonstandard */
#else
#define EXIT_WARNING  2
#endif
#endif

--- NEW FILE: jconfig.vc ---
/* jconfig.vc --- jconfig.h for Microsoft Visual C++ on Windows 95 or NT. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS	/* we presume a 32-bit flat memory model */
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

/* Define "boolean" as unsigned char, not int, per Windows custom */
#ifndef __RPCNDR_H__		/* don't conflict if rpcndr.h already read */
typedef unsigned char boolean;
#endif
#define HAVE_BOOLEAN		/* prevent jmorecfg.h from redefining it */


#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define TWO_FILE_COMMANDLINE	/* optional */
#define USE_SETMODE		/* Microsoft has setmode() */
#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: jdmaster.c ---
/*
 * jdmaster.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains master control logic for the JPEG decompressor.
 * These routines are concerned with selecting the modules to be executed
 * and with determining the number of passes and the work to be done in each
 * pass.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Private state */

typedef struct {
  struct jpeg_decomp_master pub; /* public fields */

  int pass_number;		/* # of passes completed */

  boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */

  /* Saved references to initialized quantizer modules,
   * in case we need to switch modes.
   */
  struct jpeg_color_quantizer * quantizer_1pass;
  struct jpeg_color_quantizer * quantizer_2pass;
} my_decomp_master;

typedef my_decomp_master * my_master_ptr;


/*
 * Determine whether merged upsample/color conversion should be used.
 * CRUCIAL: this must match the actual capabilities of jdmerge.c!
 */

LOCAL(boolean)
use_merged_upsample (j_decompress_ptr cinfo)
{
#ifdef UPSAMPLE_MERGING_SUPPORTED
  /* Merging is the equivalent of plain box-filter upsampling */
  if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
    return FALSE;
  /* jdmerge.c only supports YCC=>RGB color conversion */
  if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
      cinfo->out_color_space != JCS_RGB ||
      cinfo->out_color_components != RGB_PIXELSIZE)
    return FALSE;
  /* and it only handles 2h1v or 2h2v sampling ratios */
  if (cinfo->comp_info[0].h_samp_factor != 2 ||
      cinfo->comp_info[1].h_samp_factor != 1 ||
      cinfo->comp_info[2].h_samp_factor != 1 ||
      cinfo->comp_info[0].v_samp_factor >  2 ||
      cinfo->comp_info[1].v_samp_factor != 1 ||
      cinfo->comp_info[2].v_samp_factor != 1)
    return FALSE;
  /* furthermore, it doesn't work if we've scaled the IDCTs differently */
  if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
      cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
      cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
    return FALSE;
  /* ??? also need to test for upsample-time rescaling, when & if supported */
  return TRUE;			/* by golly, it'll work... */
#else
  return FALSE;
#endif
}


/*
 * Compute output image dimensions and related values.
 * NOTE: this is exported for possible use by application.
 * Hence it mustn't do anything that can't be done twice.
 * Also note that it may be called before the master module is initialized!
 */

GLOBAL(void)
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
/* Do computations that are needed before master selection phase */
{
#ifdef IDCT_SCALING_SUPPORTED
  int ci;
  jpeg_component_info *compptr;
#endif

  /* Prevent application from calling me at wrong times */
  if (cinfo->global_state != DSTATE_READY)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

#ifdef IDCT_SCALING_SUPPORTED

  /* Compute actual output image dimensions and DCT scaling choices. */
  if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
    /* Provide 1/8 scaling */
    cinfo->output_width = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width, 8L);
    cinfo->output_height = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height, 8L);
    cinfo->min_DCT_scaled_size = 1;
  } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
    /* Provide 1/4 scaling */
    cinfo->output_width = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width, 4L);
    cinfo->output_height = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height, 4L);
    cinfo->min_DCT_scaled_size = 2;
  } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
    /* Provide 1/2 scaling */
    cinfo->output_width = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width, 2L);
    cinfo->output_height = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height, 2L);
    cinfo->min_DCT_scaled_size = 4;
  } else {
    /* Provide 1/1 scaling */
    cinfo->output_width = cinfo->image_width;
    cinfo->output_height = cinfo->image_height;
    cinfo->min_DCT_scaled_size = DCTSIZE;
  }
  /* In selecting the actual DCT scaling for each component, we try to
   * scale up the chroma components via IDCT scaling rather than upsampling.
   * This saves time if the upsampler gets to use 1:1 scaling.
   * Note this code assumes that the supported DCT scalings are powers of 2.
   */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    int ssize = cinfo->min_DCT_scaled_size;
    while (ssize < DCTSIZE &&
	   (compptr->h_samp_factor * ssize * 2 <=
	    cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
	   (compptr->v_samp_factor * ssize * 2 <=
	    cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
      ssize = ssize * 2;
    }
    compptr->DCT_scaled_size = ssize;
  }

  /* Recompute downsampled dimensions of components;
   * application needs to know these if using raw downsampled data.
   */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Size in samples, after IDCT scaling */
    compptr->downsampled_width = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width *
		    (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
    compptr->downsampled_height = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height *
		    (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
  }

#else /* !IDCT_SCALING_SUPPORTED */

  /* Hardwire it to "no scaling" */
  cinfo->output_width = cinfo->image_width;
  cinfo->output_height = cinfo->image_height;
  /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
   * and has computed unscaled downsampled_width and downsampled_height.
   */

#endif /* IDCT_SCALING_SUPPORTED */

  /* Report number of components in selected colorspace. */
  /* Probably this should be in the color conversion module... */
  switch (cinfo->out_color_space) {
  case JCS_GRAYSCALE:
    cinfo->out_color_components = 1;
    break;
  case JCS_RGB:
#if RGB_PIXELSIZE != 3
    cinfo->out_color_components = RGB_PIXELSIZE;
    break;
#endif /* else share code with YCbCr */
  case JCS_YCbCr:
    cinfo->out_color_components = 3;
    break;
  case JCS_CMYK:
  case JCS_YCCK:
    cinfo->out_color_components = 4;
    break;
  default:			/* else must be same colorspace as in file */
    cinfo->out_color_components = cinfo->num_components;
    break;
  }
  cinfo->output_components = (cinfo->quantize_colors ? 1 :
			      cinfo->out_color_components);

  /* See if upsampler will want to emit more than one row at a time */
  if (use_merged_upsample(cinfo))
    cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
  else
    cinfo->rec_outbuf_height = 1;
}


/*
 * Several decompression processes need to range-limit values to the range
 * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
 * due to noise introduced by quantization, roundoff error, etc.  These
 * processes are inner loops and need to be as fast as possible.  On most
 * machines, particularly CPUs with pipelines or instruction prefetch,
 * a (subscript-check-less) C table lookup
 *		x = sample_range_limit[x];
 * is faster than explicit tests
 *		if (x < 0)  x = 0;
 *		else if (x > MAXJSAMPLE)  x = MAXJSAMPLE;
 * These processes all use a common table prepared by the routine below.
 *
 * For most steps we can mathematically guarantee that the initial value
 * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
 * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient.  But for the initial
 * limiting step (just after the IDCT), a wildly out-of-range value is 
 * possible if the input data is corrupt.  To avoid any chance of indexing
 * off the end of memory and getting a bad-pointer trap, we perform the
 * post-IDCT limiting thus:
 *		x = range_limit[x & MASK];
 * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
 * samples.  Under normal circumstances this is more than enough range and
 * a correct output will be generated; with bogus input data the mask will
 * cause wraparound, and we will safely generate a bogus-but-in-range output.
 * For the post-IDCT step, we want to convert the data from signed to unsigned
 * representation by adding CENTERJSAMPLE at the same time that we limit it.
 * So the post-IDCT limiting table ends up looking like this:
 *   CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
 *   MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
 *   0          (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
 *   0,1,...,CENTERJSAMPLE-1
 * Negative inputs select values from the upper half of the table after
 * masking.
 *
 * We can save some space by overlapping the start of the post-IDCT table
 * with the simpler range limiting table.  The post-IDCT table begins at
 * sample_range_limit + CENTERJSAMPLE.
 *
 * Note that the table is allocated in near data space on PCs; it's small
 * enough and used often enough to justify this.
 */

LOCAL(void)
prepare_range_limit_table (j_decompress_ptr cinfo)
/* Allocate and fill in the sample_range_limit table */
{
  JSAMPLE * table;
  int i;

  table = (JSAMPLE *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
		(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
  table += (MAXJSAMPLE+1);	/* allow negative subscripts of simple table */
  cinfo->sample_range_limit = table;
  /* First segment of "simple" table: limit[x] = 0 for x < 0 */
  MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
  /* Main part of "simple" table: limit[x] = x */
  for (i = 0; i <= MAXJSAMPLE; i++)
    table[i] = (JSAMPLE) i;
  table += CENTERJSAMPLE;	/* Point to where post-IDCT table starts */
  /* End of simple table, rest of first half of post-IDCT table */
  for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
    table[i] = MAXJSAMPLE;
  /* Second half of post-IDCT table */
  MEMZERO(table + (2 * (MAXJSAMPLE+1)),
	  (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
  MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
	  cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
}


/*
 * Master selection of decompression modules.
 * This is done once at jpeg_start_decompress time.  We determine
 * which modules will be used and give them appropriate initialization calls.
 * We also initialize the decompressor input side to begin consuming data.
 *
 * Since jpeg_read_header has finished, we know what is in the SOF
 * and (first) SOS markers.  We also have all the application parameter
 * settings.
 */

LOCAL(void)
master_selection (j_decompress_ptr cinfo)
{
  my_master_ptr master = (my_master_ptr) cinfo->master;
  boolean use_c_buffer;
  long samplesperrow;
  JDIMENSION jd_samplesperrow;

  /* Initialize dimensions and other stuff */
  jpeg_calc_output_dimensions(cinfo);
  prepare_range_limit_table(cinfo);

  /* Width of an output scanline must be representable as JDIMENSION. */
  samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
  jd_samplesperrow = (JDIMENSION) samplesperrow;
  if ((long) jd_samplesperrow != samplesperrow)
    ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);

  /* Initialize my private state */
  master->pass_number = 0;
  master->using_merged_upsample = use_merged_upsample(cinfo);

  /* Color quantizer selection */
  master->quantizer_1pass = NULL;
  master->quantizer_2pass = NULL;
  /* No mode changes if not using buffered-image mode. */
  if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
    cinfo->enable_1pass_quant = FALSE;
    cinfo->enable_external_quant = FALSE;
    cinfo->enable_2pass_quant = FALSE;
  }
  if (cinfo->quantize_colors) {
    if (cinfo->raw_data_out)
      ERREXIT(cinfo, JERR_NOTIMPL);
    /* 2-pass quantizer only works in 3-component color space. */
    if (cinfo->out_color_components != 3) {
      cinfo->enable_1pass_quant = TRUE;
      cinfo->enable_external_quant = FALSE;
      cinfo->enable_2pass_quant = FALSE;
      cinfo->colormap = NULL;
    } else if (cinfo->colormap != NULL) {
      cinfo->enable_external_quant = TRUE;
    } else if (cinfo->two_pass_quantize) {
      cinfo->enable_2pass_quant = TRUE;
    } else {
      cinfo->enable_1pass_quant = TRUE;
    }

    if (cinfo->enable_1pass_quant) {
#ifdef QUANT_1PASS_SUPPORTED
      jinit_1pass_quantizer(cinfo);
      master->quantizer_1pass = cinfo->cquantize;
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    }

    /* We use the 2-pass code to map to external colormaps. */
    if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
#ifdef QUANT_2PASS_SUPPORTED
      jinit_2pass_quantizer(cinfo);
      master->quantizer_2pass = cinfo->cquantize;
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    }
    /* If both quantizers are initialized, the 2-pass one is left active;
     * this is necessary for starting with quantization to an external map.
     */
  }

  /* Post-processing: in particular, color conversion first */
  if (! cinfo->raw_data_out) {
    if (master->using_merged_upsample) {
#ifdef UPSAMPLE_MERGING_SUPPORTED
      jinit_merged_upsampler(cinfo); /* does color conversion too */
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    } else {
      jinit_color_deconverter(cinfo);
      jinit_upsampler(cinfo);
    }
    jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
  }
  /* Inverse DCT */
  jinit_inverse_dct(cinfo);
  /* Entropy decoding: either Huffman or arithmetic coding. */
  if (cinfo->arith_code) {
    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
  } else {
    if (cinfo->progressive_mode) {
#ifdef D_PROGRESSIVE_SUPPORTED
      jinit_phuff_decoder(cinfo);
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    } else
      jinit_huff_decoder(cinfo);
  }

  /* Initialize principal buffer controllers. */
  use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
  jinit_d_coef_controller(cinfo, use_c_buffer);

  if (! cinfo->raw_data_out)
    jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);

  /* We can now tell the memory manager to allocate virtual arrays. */
  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);

  /* Initialize input side of decompressor to consume first scan. */
  (*cinfo->inputctl->start_input_pass) (cinfo);

#ifdef D_MULTISCAN_FILES_SUPPORTED
  /* If jpeg_start_decompress will read the whole file, initialize
   * progress monitoring appropriately.  The input step is counted
   * as one pass.
   */
  if (cinfo->progress != NULL && ! cinfo->buffered_image &&
      cinfo->inputctl->has_multiple_scans) {
    int nscans;
    /* Estimate number of scans to set pass_limit. */
    if (cinfo->progressive_mode) {
      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
      nscans = 2 + 3 * cinfo->num_components;
    } else {
      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
      nscans = cinfo->num_components;
    }
    cinfo->progress->pass_counter = 0L;
    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
    cinfo->progress->completed_passes = 0;
    cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
    /* Count the input pass as done */
    master->pass_number++;
  }
#endif /* D_MULTISCAN_FILES_SUPPORTED */
}


/*
 * Per-pass setup.
 * This is called at the beginning of each output pass.  We determine which
 * modules will be active during this pass and give them appropriate
 * start_pass calls.  We also set is_dummy_pass to indicate whether this
 * is a "real" output pass or a dummy pass for color quantization.
 * (In the latter case, jdapistd.c will crank the pass to completion.)
 */

METHODDEF(void)
prepare_for_output_pass (j_decompress_ptr cinfo)
{
  my_master_ptr master = (my_master_ptr) cinfo->master;

  if (master->pub.is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
    /* Final pass of 2-pass quantization */
    master->pub.is_dummy_pass = FALSE;
    (*cinfo->cquantize->start_pass) (cinfo, FALSE);
    (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
    (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
  } else {
    if (cinfo->quantize_colors && cinfo->colormap == NULL) {
      /* Select new quantization method */
      if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
	cinfo->cquantize = master->quantizer_2pass;
	master->pub.is_dummy_pass = TRUE;
      } else if (cinfo->enable_1pass_quant) {
	cinfo->cquantize = master->quantizer_1pass;
      } else {
	ERREXIT(cinfo, JERR_MODE_CHANGE);
      }
    }
    (*cinfo->idct->start_pass) (cinfo);
    (*cinfo->coef->start_output_pass) (cinfo);
    if (! cinfo->raw_data_out) {
      if (! master->using_merged_upsample)
	(*cinfo->cconvert->start_pass) (cinfo);
      (*cinfo->upsample->start_pass) (cinfo);
      if (cinfo->quantize_colors)
	(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
      (*cinfo->post->start_pass) (cinfo,
	    (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
      (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
    }
  }

  /* Set up progress monitor's pass info if present */
  if (cinfo->progress != NULL) {
    cinfo->progress->completed_passes = master->pass_number;
    cinfo->progress->total_passes = master->pass_number +
				    (master->pub.is_dummy_pass ? 2 : 1);
    /* In buffered-image mode, we assume one more output pass if EOI not
     * yet reached, but no more passes if EOI has been reached.
     */
    if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
      cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
    }
  }
}


/*
 * Finish up at end of an output pass.
 */

METHODDEF(void)
finish_output_pass (j_decompress_ptr cinfo)
{
  my_master_ptr master = (my_master_ptr) cinfo->master;

  if (cinfo->quantize_colors)
    (*cinfo->cquantize->finish_pass) (cinfo);
  master->pass_number++;
}


#ifdef D_MULTISCAN_FILES_SUPPORTED

/*
 * Switch to a new external colormap between output passes.
 */

GLOBAL(void)
jpeg_new_colormap (j_decompress_ptr cinfo)
{
  my_master_ptr master = (my_master_ptr) cinfo->master;

  /* Prevent application from calling me at wrong times */
  if (cinfo->global_state != DSTATE_BUFIMAGE)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  if (cinfo->quantize_colors && cinfo->enable_external_quant &&
      cinfo->colormap != NULL) {
    /* Select 2-pass quantizer for external colormap use */
    cinfo->cquantize = master->quantizer_2pass;
    /* Notify quantizer of colormap change */
    (*cinfo->cquantize->new_color_map) (cinfo);
    master->pub.is_dummy_pass = FALSE; /* just in case */
  } else
    ERREXIT(cinfo, JERR_MODE_CHANGE);
}

#endif /* D_MULTISCAN_FILES_SUPPORTED */


/*
 * Initialize master decompression control and select active modules.
 * This is performed at the start of jpeg_start_decompress.
 */

GLOBAL(void)
jinit_master_decompress (j_decompress_ptr cinfo)
{
  my_master_ptr master;

  master = (my_master_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(my_decomp_master));
  cinfo->master = (struct jpeg_decomp_master *) master;
  master->pub.prepare_for_output_pass = prepare_for_output_pass;
  master->pub.finish_output_pass = finish_output_pass;

  master->pub.is_dummy_pass = FALSE;

  master_selection(cinfo);
}

--- NEW FILE: djpeg.c ---
/*
 * djpeg.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a command-line user interface for the JPEG decompressor.
 * It should work on any system with Unix- or MS-DOS-style command lines.
 *
 * Two different command line styles are permitted, depending on the
 * compile-time switch TWO_FILE_COMMANDLINE:
 *	djpeg [options]  inputfile outputfile
 *	djpeg [options]  [inputfile]
 * In the second style, output is always to standard output, which you'd
 * normally redirect to a file or pipe to some other program.  Input is
 * either from a named file or from standard input (typically redirected).
 * The second style is convenient on Unix but is unhelpful on systems that
 * don't support pipes.  Also, you MUST use the first style if your system
 * doesn't do binary I/O to stdin/stdout.
 * To simplify script writing, the "-outfile" switch is provided.  The syntax
 *	djpeg [options]  -outfile outputfile  inputfile
 * works regardless of which command line style is used.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */
#include "jversion.h"		/* for version message */

#include <ctype.h>		/* to declare isprint() */

#ifdef USE_CCOMMAND		/* command-line reader for Macintosh */
#ifdef __MWERKS__
#include <SIOUX.h>              /* Metrowerks needs this */
#include <console.h>		/* ... and this */
#endif
#ifdef THINK_C
#include <console.h>		/* Think declares it here */
#endif
#endif


/* Create the add-on message string table. */

#define JMESSAGE(code,string)	string ,

static const char * const cdjpeg_message_table[] = {
#include "cderror.h"
  NULL
};


/*
 * This list defines the known output image formats
 * (not all of which need be supported by a given version).
 * You can change the default output format by defining DEFAULT_FMT;
 * indeed, you had better do so if you undefine PPM_SUPPORTED.
 */

typedef enum {
	FMT_BMP,		/* BMP format (Windows flavor) */
	FMT_GIF,		/* GIF format */
	FMT_OS2,		/* BMP format (OS/2 flavor) */
	FMT_PPM,		/* PPM/PGM (PBMPLUS formats) */
	FMT_RLE,		/* RLE format */
	FMT_TARGA,		/* Targa format */
	FMT_TIFF		/* TIFF format */
} IMAGE_FORMATS;

#ifndef DEFAULT_FMT		/* so can override from CFLAGS in Makefile */
#define DEFAULT_FMT	FMT_PPM
#endif

static IMAGE_FORMATS requested_fmt;


/*
 * Argument-parsing code.
 * The switch parser is designed to be useful with DOS-style command line
 * syntax, ie, intermixed switches and file names, where only the switches
 * to the left of a given file name affect processing of that file.
 * The main program in this file doesn't actually use this capability...
 */


static const char * progname;	/* program name for error messages */
static char * outfilename;	/* for -outfile switch */


LOCAL(void)
usage (void)
/* complain about bad command line */
{
  fprintf(stderr, "usage: %s [switches] ", progname);
#ifdef TWO_FILE_COMMANDLINE
  fprintf(stderr, "inputfile outputfile\n");
#else
  fprintf(stderr, "[inputfile]\n");
#endif

  fprintf(stderr, "Switches (names may be abbreviated):\n");
  fprintf(stderr, "  -colors N      Reduce image to no more than N colors\n");
  fprintf(stderr, "  -fast          Fast, low-quality processing\n");
  fprintf(stderr, "  -grayscale     Force grayscale output\n");
#ifdef IDCT_SCALING_SUPPORTED
  fprintf(stderr, "  -scale M/N     Scale output image by fraction M/N, eg, 1/8\n");
#endif
#ifdef BMP_SUPPORTED
  fprintf(stderr, "  -bmp           Select BMP output format (Windows style)%s\n",
	  (DEFAULT_FMT == FMT_BMP ? " (default)" : ""));
#endif
#ifdef GIF_SUPPORTED
  fprintf(stderr, "  -gif           Select GIF output format%s\n",
	  (DEFAULT_FMT == FMT_GIF ? " (default)" : ""));
#endif
#ifdef BMP_SUPPORTED
  fprintf(stderr, "  -os2           Select BMP output format (OS/2 style)%s\n",
	  (DEFAULT_FMT == FMT_OS2 ? " (default)" : ""));
#endif
#ifdef PPM_SUPPORTED
  fprintf(stderr, "  -pnm           Select PBMPLUS (PPM/PGM) output format%s\n",
	  (DEFAULT_FMT == FMT_PPM ? " (default)" : ""));
#endif
#ifdef RLE_SUPPORTED
  fprintf(stderr, "  -rle           Select Utah RLE output format%s\n",
	  (DEFAULT_FMT == FMT_RLE ? " (default)" : ""));
#endif
#ifdef TARGA_SUPPORTED
  fprintf(stderr, "  -targa         Select Targa output format%s\n",
	  (DEFAULT_FMT == FMT_TARGA ? " (default)" : ""));
#endif
  fprintf(stderr, "Switches for advanced users:\n");
#ifdef DCT_ISLOW_SUPPORTED
  fprintf(stderr, "  -dct int       Use integer DCT method%s\n",
	  (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
#endif
#ifdef DCT_IFAST_SUPPORTED
  fprintf(stderr, "  -dct fast      Use fast integer DCT (less accurate)%s\n",
	  (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
#endif
#ifdef DCT_FLOAT_SUPPORTED
  fprintf(stderr, "  -dct float     Use floating-point DCT method%s\n",
	  (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
#endif
  fprintf(stderr, "  -dither fs     Use F-S dithering (default)\n");
  fprintf(stderr, "  -dither none   Don't use dithering in quantization\n");
  fprintf(stderr, "  -dither ordered  Use ordered dither (medium speed, quality)\n");
#ifdef QUANT_2PASS_SUPPORTED
  fprintf(stderr, "  -map FILE      Map to colors used in named image file\n");
#endif
  fprintf(stderr, "  -nosmooth      Don't use high-quality upsampling\n");
#ifdef QUANT_1PASS_SUPPORTED
  fprintf(stderr, "  -onepass       Use 1-pass quantization (fast, low quality)\n");
#endif
  fprintf(stderr, "  -maxmemory N   Maximum memory to use (in kbytes)\n");
  fprintf(stderr, "  -outfile name  Specify name for output file\n");
  fprintf(stderr, "  -verbose  or  -debug   Emit debug output\n");
  exit(EXIT_FAILURE);
}


LOCAL(int)
parse_switches (j_decompress_ptr cinfo, int argc, char **argv,
		int last_file_arg_seen, boolean for_real)
/* Parse optional switches.
 * Returns argv[] index of first file-name argument (== argc if none).
 * Any file names with indexes <= last_file_arg_seen are ignored;
 * they have presumably been processed in a previous iteration.
 * (Pass 0 for last_file_arg_seen on the first or only iteration.)
 * for_real is FALSE on the first (dummy) pass; we may skip any expensive
 * processing.
 */
{
  int argn;
  char * arg;

  /* Set up default JPEG parameters. */
  requested_fmt = DEFAULT_FMT;	/* set default output file format */
  outfilename = NULL;
  cinfo->err->trace_level = 0;

  /* Scan command line options, adjust parameters */

  for (argn = 1; argn < argc; argn++) {
    arg = argv[argn];
    if (*arg != '-') {
      /* Not a switch, must be a file name argument */
      if (argn <= last_file_arg_seen) {
	outfilename = NULL;	/* -outfile applies to just one input file */
	continue;		/* ignore this name if previously processed */
      }
      break;			/* else done parsing switches */
    }
    arg++;			/* advance past switch marker character */

    if (keymatch(arg, "bmp", 1)) {
      /* BMP output format. */
      requested_fmt = FMT_BMP;

    } else if (keymatch(arg, "colors", 1) || keymatch(arg, "colours", 1) ||
	       keymatch(arg, "quantize", 1) || keymatch(arg, "quantise", 1)) {
      /* Do color quantization. */
      int val;

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%d", &val) != 1)
	usage();
      cinfo->desired_number_of_colors = val;
      cinfo->quantize_colors = TRUE;

    } else if (keymatch(arg, "dct", 2)) {
      /* Select IDCT algorithm. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "int", 1)) {
	cinfo->dct_method = JDCT_ISLOW;
      } else if (keymatch(argv[argn], "fast", 2)) {
	cinfo->dct_method = JDCT_IFAST;
      } else if (keymatch(argv[argn], "float", 2)) {
	cinfo->dct_method = JDCT_FLOAT;
      } else
	usage();

    } else if (keymatch(arg, "dither", 2)) {
      /* Select dithering algorithm. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "fs", 2)) {
	cinfo->dither_mode = JDITHER_FS;
      } else if (keymatch(argv[argn], "none", 2)) {
	cinfo->dither_mode = JDITHER_NONE;
      } else if (keymatch(argv[argn], "ordered", 2)) {
	cinfo->dither_mode = JDITHER_ORDERED;
      } else
	usage();

    } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
      /* Enable debug printouts. */
      /* On first -d, print version identification */
      static boolean printed_version = FALSE;

      if (! printed_version) {
	fprintf(stderr, "Independent JPEG Group's DJPEG, version %s\n%s\n",
		JVERSION, JCOPYRIGHT);
	printed_version = TRUE;
      }
      cinfo->err->trace_level++;

    } else if (keymatch(arg, "fast", 1)) {
      /* Select recommended processing options for quick-and-dirty output. */
      cinfo->two_pass_quantize = FALSE;
      cinfo->dither_mode = JDITHER_ORDERED;
      if (! cinfo->quantize_colors) /* don't override an earlier -colors */
	cinfo->desired_number_of_colors = 216;
      cinfo->dct_method = JDCT_FASTEST;
      cinfo->do_fancy_upsampling = FALSE;

    } else if (keymatch(arg, "gif", 1)) {
      /* GIF output format. */
      requested_fmt = FMT_GIF;

    } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
      /* Force monochrome output. */
      cinfo->out_color_space = JCS_GRAYSCALE;

    } else if (keymatch(arg, "map", 3)) {
      /* Quantize to a color map taken from an input file. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (for_real) {		/* too expensive to do twice! */
#ifdef QUANT_2PASS_SUPPORTED	/* otherwise can't quantize to supplied map */
	FILE * mapfile;

	if ((mapfile = fopen(argv[argn], READ_BINARY)) == NULL) {
	  fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
	  exit(EXIT_FAILURE);
	}
	read_color_map(cinfo, mapfile);
	fclose(mapfile);
	cinfo->quantize_colors = TRUE;
#else
	ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
      }

    } else if (keymatch(arg, "maxmemory", 3)) {
      /* Maximum memory in Kb (or Mb with 'm'). */
      long lval;
      char ch = 'x';

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
	usage();
      if (ch == 'm' || ch == 'M')
	lval *= 1000L;
      cinfo->mem->max_memory_to_use = lval * 1000L;

    } else if (keymatch(arg, "nosmooth", 3)) {
      /* Suppress fancy upsampling */
      cinfo->do_fancy_upsampling = FALSE;

    } else if (keymatch(arg, "onepass", 3)) {
      /* Use fast one-pass quantization. */
      cinfo->two_pass_quantize = FALSE;

    } else if (keymatch(arg, "os2", 3)) {
      /* BMP output format (OS/2 flavor). */
      requested_fmt = FMT_OS2;

    } else if (keymatch(arg, "outfile", 4)) {
      /* Set output file name. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      outfilename = argv[argn];	/* save it away for later use */

    } else if (keymatch(arg, "pnm", 1) || keymatch(arg, "ppm", 1)) {
      /* PPM/PGM output format. */
      requested_fmt = FMT_PPM;

    } else if (keymatch(arg, "rle", 1)) {
      /* RLE output format. */
      requested_fmt = FMT_RLE;

    } else if (keymatch(arg, "scale", 1)) {
      /* Scale the output image by a fraction M/N. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%d/%d",
		 &cinfo->scale_num, &cinfo->scale_denom) != 2)
	usage();

    } else if (keymatch(arg, "targa", 1)) {
      /* Targa output format. */
      requested_fmt = FMT_TARGA;

    } else {
      usage();			/* bogus switch */
    }
  }

  return argn;			/* return index of next arg (file name) */
}


/*
 * Marker processor for COM and interesting APPn markers.
 * This replaces the library's built-in processor, which just skips the marker.
 * We want to print out the marker as text, to the extent possible.
 * Note this code relies on a non-suspending data source.
 */

LOCAL(unsigned int)
jpeg_getc (j_decompress_ptr cinfo)
/* Read next byte */
{
  struct jpeg_source_mgr * datasrc = cinfo->src;

  if (datasrc->bytes_in_buffer == 0) {
    if (! (*datasrc->fill_input_buffer) (cinfo))
      ERREXIT(cinfo, JERR_CANT_SUSPEND);
  }
  datasrc->bytes_in_buffer--;
  return GETJOCTET(*datasrc->next_input_byte++);
}


METHODDEF(boolean)
print_text_marker (j_decompress_ptr cinfo)
{
  boolean traceit = (cinfo->err->trace_level >= 1);
  INT32 length;
  unsigned int ch;
  unsigned int lastch = 0;

  length = jpeg_getc(cinfo) << 8;
  length += jpeg_getc(cinfo);
  length -= 2;			/* discount the length word itself */

  if (traceit) {
    if (cinfo->unread_marker == JPEG_COM)
      fprintf(stderr, "Comment, length %ld:\n", (long) length);
    else			/* assume it is an APPn otherwise */
      fprintf(stderr, "APP%d, length %ld:\n",
	      cinfo->unread_marker - JPEG_APP0, (long) length);
  }

  while (--length >= 0) {
    ch = jpeg_getc(cinfo);
    if (traceit) {
      /* Emit the character in a readable form.
       * Nonprintables are converted to \nnn form,
       * while \ is converted to \\.
       * Newlines in CR, CR/LF, or LF form will be printed as one newline.
       */
      if (ch == '\r') {
	fprintf(stderr, "\n");
      } else if (ch == '\n') {
	if (lastch != '\r')
	  fprintf(stderr, "\n");
      } else if (ch == '\\') {
	fprintf(stderr, "\\\\");
      } else if (isprint(ch)) {
	putc(ch, stderr);
      } else {
	fprintf(stderr, "\\%03o", ch);
      }
      lastch = ch;
    }
  }

  if (traceit)
    fprintf(stderr, "\n");

  return TRUE;
}


/*
 * The main program.
 */

int
main (int argc, char **argv)
{
  struct jpeg_decompress_struct cinfo;
  struct jpeg_error_mgr jerr;
#ifdef PROGRESS_REPORT
  struct cdjpeg_progress_mgr progress;
#endif
  int file_index;
  djpeg_dest_ptr dest_mgr = NULL;
  FILE * input_file;
  FILE * output_file;
  JDIMENSION num_scanlines;

  /* On Mac, fetch a command line. */
#ifdef USE_CCOMMAND
  argc = ccommand(&argv);
#endif

  progname = argv[0];
  if (progname == NULL || progname[0] == 0)
    progname = "djpeg";		/* in case C library doesn't provide it */

  /* Initialize the JPEG decompression object with default error handling. */
  cinfo.err = jpeg_std_error(&jerr);
  jpeg_create_decompress(&cinfo);
  /* Add some application-specific error messages (from cderror.h) */
  jerr.addon_message_table = cdjpeg_message_table;
  jerr.first_addon_message = JMSG_FIRSTADDONCODE;
  jerr.last_addon_message = JMSG_LASTADDONCODE;

  /* Insert custom marker processor for COM and APP12.
   * APP12 is used by some digital camera makers for textual info,
   * so we provide the ability to display it as text.
   * If you like, additional APPn marker types can be selected for display,
   * but don't try to override APP0 or APP14 this way (see libjpeg.doc).
   */
  jpeg_set_marker_processor(&cinfo, JPEG_COM, print_text_marker);
  jpeg_set_marker_processor(&cinfo, JPEG_APP0+12, print_text_marker);

  /* Now safe to enable signal catcher. */
#ifdef NEED_SIGNAL_CATCHER
  enable_signal_catcher((j_common_ptr) &cinfo);
#endif

  /* Scan command line to find file names. */
  /* It is convenient to use just one switch-parsing routine, but the switch
   * values read here are ignored; we will rescan the switches after opening
   * the input file.
   * (Exception: tracing level set here controls verbosity for COM markers
   * found during jpeg_read_header...)
   */

  file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);

#ifdef TWO_FILE_COMMANDLINE
  /* Must have either -outfile switch or explicit output file name */
  if (outfilename == NULL) {
    if (file_index != argc-2) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
    outfilename = argv[file_index+1];
  } else {
    if (file_index != argc-1) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
  }
#else
  /* Unix style: expect zero or one file name */
  if (file_index < argc-1) {
    fprintf(stderr, "%s: only one input file\n", progname);
    usage();
  }
#endif /* TWO_FILE_COMMANDLINE */

  /* Open the input file. */
  if (file_index < argc) {
    if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default input file is stdin */
    input_file = read_stdin();
  }

  /* Open the output file. */
  if (outfilename != NULL) {
    if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default output file is stdout */
    output_file = write_stdout();
  }

#ifdef PROGRESS_REPORT
  start_progress_monitor((j_common_ptr) &cinfo, &progress);
#endif

  /* Specify data source for decompression */
  jpeg_stdio_src(&cinfo, input_file);

  /* Read file header, set default decompression parameters */
  (void) jpeg_read_header(&cinfo, TRUE);

  /* Adjust default decompression parameters by re-parsing the options */
  file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);

  /* Initialize the output module now to let it override any crucial
   * option settings (for instance, GIF wants to force color quantization).
   */
  switch (requested_fmt) {
#ifdef BMP_SUPPORTED
  case FMT_BMP:
    dest_mgr = jinit_write_bmp(&cinfo, FALSE);
    break;
  case FMT_OS2:
    dest_mgr = jinit_write_bmp(&cinfo, TRUE);
    break;
#endif
#ifdef GIF_SUPPORTED
  case FMT_GIF:
    dest_mgr = jinit_write_gif(&cinfo);
    break;
#endif
#ifdef PPM_SUPPORTED
  case FMT_PPM:
    dest_mgr = jinit_write_ppm(&cinfo);
    break;
#endif
#ifdef RLE_SUPPORTED
  case FMT_RLE:
    dest_mgr = jinit_write_rle(&cinfo);
    break;
#endif
#ifdef TARGA_SUPPORTED
  case FMT_TARGA:
    dest_mgr = jinit_write_targa(&cinfo);
    break;
#endif
  default:
    ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT);
    break;
  }
  dest_mgr->output_file = output_file;

  /* Start decompressor */
  (void) jpeg_start_decompress(&cinfo);

  /* Write output file header */
  (*dest_mgr->start_output) (&cinfo, dest_mgr);

  /* Process data */
  while (cinfo.output_scanline < cinfo.output_height) {
    num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer,
					dest_mgr->buffer_height);
    (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines);
  }

#ifdef PROGRESS_REPORT
  /* Hack: count final pass as done in case finish_output does an extra pass.
   * The library won't have updated completed_passes.
   */
  progress.pub.completed_passes = progress.pub.total_passes;
#endif

  /* Finish decompression and release memory.
   * I must do it in this order because output module has allocated memory
   * of lifespan JPOOL_IMAGE; it needs to finish before releasing memory.
   */
  (*dest_mgr->finish_output) (&cinfo, dest_mgr);
  (void) jpeg_finish_decompress(&cinfo);
  jpeg_destroy_decompress(&cinfo);

  /* Close files, if we opened them */
  if (input_file != stdin)
    fclose(input_file);
  if (output_file != stdout)
    fclose(output_file);

#ifdef PROGRESS_REPORT
  end_progress_monitor((j_common_ptr) &cinfo);
#endif

  /* All done. */
  exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
  return 0;			/* suppress no-return-value warnings */
}

--- NEW FILE: coderules.doc ---
IJG JPEG LIBRARY:  CODING RULES

Copyright (C) 1991-1996, Thomas G. Lane.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.


Since numerous people will be contributing code and bug fixes, it's important
to establish a common coding style.  The goal of using similar coding styles
is much more important than the details of just what that style is.

In general we follow the recommendations of "Recommended C Style and Coding
Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and
Brader).  This document is available in the IJG FTP archive (see
jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl).

Block comments should be laid out thusly:

/*
 *  Block comments in this style.
 */

We indent statements in K&R style, e.g.,
	if (test) {
	  then-part;
	} else {
	  else-part;
	}
with two spaces per indentation level.  (This indentation convention is
handled automatically by GNU Emacs and many other text editors.)

Multi-word names should be written in lower case with underscores, e.g.,
multi_word_name (not multiWordName).  Preprocessor symbols and enum constants
are similar but upper case (MULTI_WORD_NAME).  Names should be unique within
the first fifteen characters.  (On some older systems, global names must be
unique within six characters.  We accommodate this without cluttering the
source code by using macros to substitute shorter names.)

We use function prototypes everywhere; we rely on automatic source code
transformation to feed prototype-less C compilers.  Transformation is done
by the simple and portable tool 'ansi2knr.c' (courtesy of Ghostscript).
ansi2knr is not very bright, so it imposes a format requirement on function
declarations: the function name MUST BEGIN IN COLUMN 1.  Thus all functions
should be written in the following style:

LOCAL(int *)
function_name (int a, char *b)
{
    code...
}

Note that each function definition must begin with GLOBAL(type), LOCAL(type),
or METHODDEF(type).  These macros expand to "static type" or just "type" as
appropriate.  They provide a readable indication of the routine's usage and
can readily be changed for special needs.  (For instance, special linkage
keywords can be inserted for use in Windows DLLs.)

ansi2knr does not transform method declarations (function pointers in
structs).  We handle these with a macro JMETHOD, defined as
	#ifdef HAVE_PROTOTYPES
	#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist
	#else
	#define JMETHOD(type,methodname,arglist)  type (*methodname) ()
	#endif
which is used like this:
	struct function_pointers {
	  JMETHOD(void, init_entropy_encoder, (int somearg, jparms *jp));
	  JMETHOD(void, term_entropy_encoder, (void));
	};
Note the set of parentheses surrounding the parameter list.

A similar solution is used for forward and external function declarations
(see the EXTERN and JPP macros).

If the code is to work on non-ANSI compilers, we cannot rely on a prototype
declaration to coerce actual parameters into the right types.  Therefore, use
explicit casts on actual parameters whenever the actual parameter type is not
identical to the formal parameter.  Beware of implicit conversions to "int".

It seems there are some non-ANSI compilers in which the sizeof() operator
is defined to return int, yet size_t is defined as long.  Needless to say,
this is brain-damaged.  Always use the SIZEOF() macro in place of sizeof(),
so that the result is guaranteed to be of type size_t.


The JPEG library is intended to be used within larger programs.  Furthermore,
we want it to be reentrant so that it can be used by applications that process
multiple images concurrently.  The following rules support these requirements:

1. Avoid direct use of file I/O, "malloc", error report printouts, etc;
pass these through the common routines provided.

2. Minimize global namespace pollution.  Functions should be declared static
wherever possible.  (Note that our method-based calling conventions help this
a lot: in many modules only the initialization function will ever need to be
called directly, so only that function need be externally visible.)  All
global function names should begin with "jpeg_", and should have an
abbreviated name (unique in the first six characters) substituted by macro
when NEED_SHORT_EXTERNAL_NAMES is set.

3. Don't use global variables; anything that must be used in another module
should be in the common data structures.

4. Don't use static variables except for read-only constant tables.  Variables
that should be private to a module can be placed into private structures (see
the system architecture document, structure.doc).

5. Source file names should begin with "j" for files that are part of the
library proper; source files that are not part of the library, such as cjpeg.c
and djpeg.c, do not begin with "j".  Keep source file names to eight
characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers.  Keep
compression and decompression code in separate source files --- some
applications may want only one half of the library.

Note: these rules (particularly #4) are not followed religiously in the
modules that are used in cjpeg/djpeg but are not part of the JPEG library
proper.  Those modules are not really intended to be used in other
applications.

--- NEW FILE: jcapimin.c ---
/*
 * jcapimin.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains application interface code for the compression half
 * of the JPEG library.  These are the "minimum" API routines that may be
 * needed in either the normal full-compression case or the transcoding-only
 * case.
 *
 * Most of the routines intended to be called directly by an application
 * are in this file or in jcapistd.c.  But also see jcparam.c for
 * parameter-setup helper routines, jcomapi.c for routines shared by
 * compression and decompression, and jctrans.c for the transcoding case.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * Initialization of a JPEG compression object.
 * The error manager must already be set up (in case memory manager fails).
 */

GLOBAL(void)
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize)
{
  int i;

  /* Guard against version mismatches between library and caller. */
  cinfo->mem = NULL;		/* so jpeg_destroy knows mem mgr not called */
  if (version != JPEG_LIB_VERSION)
    ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version);
  if (structsize != SIZEOF(struct jpeg_compress_struct))
    ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, 
	     (int) SIZEOF(struct jpeg_compress_struct), (int) structsize);

  /* For debugging purposes, we zero the whole master structure.
   * But the application has already set the err pointer, and may have set
   * client_data, so we have to save and restore those fields.
   * Note: if application hasn't set client_data, tools like Purify may
   * complain here.
   */
  {
    struct jpeg_error_mgr * err = cinfo->err;
    void * client_data = cinfo->client_data; /* ignore Purify complaint here */
    MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct));
    cinfo->err = err;
    cinfo->client_data = client_data;
  }
  cinfo->is_decompressor = FALSE;

  /* Initialize a memory manager instance for this object */
  jinit_memory_mgr((j_common_ptr) cinfo);

  /* Zero out pointers to permanent structures. */
  cinfo->progress = NULL;
  cinfo->dest = NULL;

  cinfo->comp_info = NULL;

  for (i = 0; i < NUM_QUANT_TBLS; i++)
    cinfo->quant_tbl_ptrs[i] = NULL;

  for (i = 0; i < NUM_HUFF_TBLS; i++) {
    cinfo->dc_huff_tbl_ptrs[i] = NULL;
    cinfo->ac_huff_tbl_ptrs[i] = NULL;
  }

  cinfo->script_space = NULL;

  cinfo->input_gamma = 1.0;	/* in case application forgets */

  /* OK, I'm ready */
  cinfo->global_state = CSTATE_START;
}


/*
 * Destruction of a JPEG compression object
 */

GLOBAL(void)
jpeg_destroy_compress (j_compress_ptr cinfo)
{
  jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
}


/*
 * Abort processing of a JPEG compression operation,
 * but don't destroy the object itself.
 */

GLOBAL(void)
jpeg_abort_compress (j_compress_ptr cinfo)
{
  jpeg_abort((j_common_ptr) cinfo); /* use common routine */
}


/*
 * Forcibly suppress or un-suppress all quantization and Huffman tables.
 * Marks all currently defined tables as already written (if suppress)
 * or not written (if !suppress).  This will control whether they get emitted
 * by a subsequent jpeg_start_compress call.
 *
 * This routine is exported for use by applications that want to produce
 * abbreviated JPEG datastreams.  It logically belongs in jcparam.c, but
 * since it is called by jpeg_start_compress, we put it here --- otherwise
 * jcparam.o would be linked whether the application used it or not.
 */

GLOBAL(void)
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress)
{
  int i;
  JQUANT_TBL * qtbl;
  JHUFF_TBL * htbl;

  for (i = 0; i < NUM_QUANT_TBLS; i++) {
    if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL)
      qtbl->sent_table = suppress;
  }

  for (i = 0; i < NUM_HUFF_TBLS; i++) {
    if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL)
      htbl->sent_table = suppress;
    if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL)
      htbl->sent_table = suppress;
  }
}


/*
 * Finish JPEG compression.
 *
 * If a multipass operating mode was selected, this may do a great deal of
 * work including most of the actual output.
 */

GLOBAL(void)
jpeg_finish_compress (j_compress_ptr cinfo)
{
  JDIMENSION iMCU_row;

  if (cinfo->global_state == CSTATE_SCANNING ||
      cinfo->global_state == CSTATE_RAW_OK) {
    /* Terminate first pass */
    if (cinfo->next_scanline < cinfo->image_height)
      ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
    (*cinfo->master->finish_pass) (cinfo);
  } else if (cinfo->global_state != CSTATE_WRCOEFS)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  /* Perform any remaining passes */
  while (! cinfo->master->is_last_pass) {
    (*cinfo->master->prepare_for_pass) (cinfo);
    for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) {
      if (cinfo->progress != NULL) {
	cinfo->progress->pass_counter = (long) iMCU_row;
	cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows;
	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
      }
      /* We bypass the main controller and invoke coef controller directly;
       * all work is being done from the coefficient buffer.
       */
      if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL))
	ERREXIT(cinfo, JERR_CANT_SUSPEND);
    }
    (*cinfo->master->finish_pass) (cinfo);
  }
  /* Write EOI, do final cleanup */
  (*cinfo->marker->write_file_trailer) (cinfo);
  (*cinfo->dest->term_destination) (cinfo);
  /* We can use jpeg_abort to release memory and reset global_state */
  jpeg_abort((j_common_ptr) cinfo);
}


/*
 * Write a special marker.
 * This is only recommended for writing COM or APPn markers.
 * Must be called after jpeg_start_compress() and before
 * first call to jpeg_write_scanlines() or jpeg_write_raw_data().
 */

GLOBAL(void)
jpeg_write_marker (j_compress_ptr cinfo, int marker,
		   const JOCTET *dataptr, unsigned int datalen)
{
  JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val));

  if (cinfo->next_scanline != 0 ||
      (cinfo->global_state != CSTATE_SCANNING &&
       cinfo->global_state != CSTATE_RAW_OK &&
       cinfo->global_state != CSTATE_WRCOEFS))
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
  write_marker_byte = cinfo->marker->write_marker_byte;	/* copy for speed */
  while (datalen--) {
    (*write_marker_byte) (cinfo, *dataptr);
    dataptr++;
  }
}

/* Same, but piecemeal. */

GLOBAL(void)
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen)
{
  if (cinfo->next_scanline != 0 ||
      (cinfo->global_state != CSTATE_SCANNING &&
       cinfo->global_state != CSTATE_RAW_OK &&
       cinfo->global_state != CSTATE_WRCOEFS))
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  (*cinfo->marker->write_marker_header) (cinfo, marker, datalen);
}

GLOBAL(void)
jpeg_write_m_byte (j_compress_ptr cinfo, int val)
{
  (*cinfo->marker->write_marker_byte) (cinfo, val);
}


/*
 * Alternate compression function: just write an abbreviated table file.
 * Before calling this, all parameters and a data destination must be set up.
 *
 * To produce a pair of files containing abbreviated tables and abbreviated
 * image data, one would proceed as follows:
 *
 *		initialize JPEG object
 *		set JPEG parameters
 *		set destination to table file
 *		jpeg_write_tables(cinfo);
 *		set destination to image file
 *		jpeg_start_compress(cinfo, FALSE);
 *		write data...
 *		jpeg_finish_compress(cinfo);
 *
 * jpeg_write_tables has the side effect of marking all tables written
 * (same as jpeg_suppress_tables(..., TRUE)).  Thus a subsequent start_compress
 * will not re-emit the tables unless it is passed write_all_tables=TRUE.
 */

GLOBAL(void)
jpeg_write_tables (j_compress_ptr cinfo)
{
  if (cinfo->global_state != CSTATE_START)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  /* (Re)initialize error mgr and destination modules */
  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
  (*cinfo->dest->init_destination) (cinfo);
  /* Initialize the marker writer ... bit of a crock to do it here. */
  jinit_marker_writer(cinfo);
  /* Write them tables! */
  (*cinfo->marker->write_tables_only) (cinfo);
  /* And clean up. */
  (*cinfo->dest->term_destination) (cinfo);
  /*
   * In library releases up through v6a, we called jpeg_abort() here to free
   * any working memory allocated by the destination manager and marker
   * writer.  Some applications had a problem with that: they allocated space
   * of their own from the library memory manager, and didn't want it to go
   * away during write_tables.  So now we do nothing.  This will cause a
   * memory leak if an app calls write_tables repeatedly without doing a full
   * compression cycle or otherwise resetting the JPEG object.  However, that
   * seems less bad than unexpectedly freeing memory in the normal case.
   * An app that prefers the old behavior can call jpeg_abort for itself after
   * each call to jpeg_write_tables().
   */
}

--- NEW FILE: usage.doc ---
USAGE instructions for the Independent JPEG Group's JPEG software
=================================================================

This file describes usage of the JPEG conversion programs cjpeg and djpeg,
as well as the utility programs jpegtran, rdjpgcom and wrjpgcom.  (See
the other documentation files if you wish to use the JPEG library within
your own programs.)

If you are on a Unix machine you may prefer to read the Unix-style manual
pages in files cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1.


INTRODUCTION

These programs implement JPEG image compression and decompression.  JPEG
(pronounced "jay-peg") is a standardized compression method for full-color
and gray-scale images.  JPEG is designed to handle "real-world" scenes,
for example scanned photographs.  Cartoons, line drawings, and other
non-realistic images are not JPEG's strong suit; on that sort of material
you may get poor image quality and/or little compression.

JPEG is lossy, meaning that the output image is not necessarily identical to
the input image.  Hence you should not use JPEG if you have to have identical
output bits.  However, on typical real-world images, very good compression
levels can be obtained with no visible change, and amazingly high compression
is possible if you can tolerate a low-quality image.  You can trade off image
quality against file size by adjusting the compressor's "quality" setting.


GENERAL USAGE

We provide two programs, cjpeg to compress an image file into JPEG format,
and djpeg to decompress a JPEG file back into a conventional image format.

On Unix-like systems, you say:
	cjpeg [switches] [imagefile] >jpegfile
or
	djpeg [switches] [jpegfile]  >imagefile
The programs read the specified input file, or standard input if none is
named.  They always write to standard output (with trace/error messages to
standard error).  These conventions are handy for piping images between
programs.

On most non-Unix systems, you say:
	cjpeg [switches] imagefile jpegfile
or
	djpeg [switches] jpegfile  imagefile
i.e., both the input and output files are named on the command line.  This
style is a little more foolproof, and it loses no functionality if you don't
have pipes.  (You can get this style on Unix too, if you prefer, by defining
TWO_FILE_COMMANDLINE when you compile the programs; see install.doc.)

You can also say:
	cjpeg [switches] -outfile jpegfile  imagefile
or
	djpeg [switches] -outfile imagefile  jpegfile
This syntax works on all systems, so it is useful for scripts.

The currently supported image file formats are: PPM (PBMPLUS color format),
PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster Toolkit
format).  (RLE is supported only if the URT library is available.)
cjpeg recognizes the input image format automatically, with the exception
of some Targa-format files.  You have to tell djpeg which format to generate.

JPEG files are in the defacto standard JFIF file format.  There are other,
less widely used JPEG-based file formats, but we don't support them.

All switch names may be abbreviated; for example, -grayscale may be written
-gray or -gr.  Most of the "basic" switches can be abbreviated to as little as
one letter.  Upper and lower case are equivalent (-BMP is the same as -bmp).
British spellings are also accepted (e.g., -greyscale), though for brevity
these are not mentioned below.


CJPEG DETAILS

The basic command line switches for cjpeg are:

	-quality N	Scale quantization tables to adjust image quality.
			Quality is 0 (worst) to 100 (best); default is 75.
			(See below for more info.)

	-grayscale	Create monochrome JPEG file from color input.
			Be sure to use this switch when compressing a grayscale
			BMP file, because cjpeg isn't bright enough to notice
			whether a BMP file uses only shades of gray.  By
			saying -grayscale, you'll get a smaller JPEG file that
			takes less time to process.

	-optimize	Perform optimization of entropy encoding parameters.
			Without this, default encoding parameters are used.
			-optimize usually makes the JPEG file a little smaller,
			but cjpeg runs somewhat slower and needs much more
			memory.  Image quality and speed of decompression are
			unaffected by -optimize.

	-progressive	Create progressive JPEG file (see below).

	-targa		Input file is Targa format.  Targa files that contain
			an "identification" field will not be automatically
			recognized by cjpeg; for such files you must specify
			-targa to make cjpeg treat the input as Targa format.
			For most Targa files, you won't need this switch.

The -quality switch lets you trade off compressed file size against quality of
the reconstructed image: the higher the quality setting, the larger the JPEG
file, and the closer the output image will be to the original input.  Normally
you want to use the lowest quality setting (smallest file) that decompresses
into something visually indistinguishable from the original image.  For this
purpose the quality setting should be between 50 and 95; the default of 75 is
often about right.  If you see defects at -quality 75, then go up 5 or 10
counts at a time until you are happy with the output image.  (The optimal
setting will vary from one image to another.)

-quality 100 will generate a quantization table of all 1's, minimizing loss
in the quantization step (but there is still information loss in subsampling,
as well as roundoff error).  This setting is mainly of interest for
experimental purposes.  Quality values above about 95 are NOT recommended for
normal use; the compressed file size goes up dramatically for hardly any gain
in output image quality.

In the other direction, quality values below 50 will produce very small files
of low image quality.  Settings around 5 to 10 might be useful in preparing an
index of a large image library, for example.  Try -quality 2 (or so) for some
amusing Cubist effects.  (Note: quality values below about 25 generate 2-byte
quantization tables, which are considered optional in the JPEG standard.
cjpeg emits a warning message when you give such a quality value, because some
other JPEG programs may be unable to decode the resulting file.  Use -baseline
if you need to ensure compatibility at low quality values.)

The -progressive switch creates a "progressive JPEG" file.  In this type of
JPEG file, the data is stored in multiple scans of increasing quality.  If the
file is being transmitted over a slow communications link, the decoder can use
the first scan to display a low-quality image very quickly, and can then
improve the display with each subsequent scan.  The final image is exactly
equivalent to a standard JPEG file of the same quality setting, and the total
file size is about the same --- often a little smaller.  CAUTION: progressive
JPEG is not yet widely implemented, so many decoders will be unable to view a
progressive JPEG file at all.

Switches for advanced users:

	-dct int	Use integer DCT method (default).
	-dct fast	Use fast integer DCT (less accurate).
	-dct float	Use floating-point DCT method.
			The float method is very slightly more accurate than
			the int method, but is much slower unless your machine
			has very fast floating-point hardware.  Also note that
			results of the floating-point method may vary slightly
			across machines, while the integer methods should give
			the same results everywhere.  The fast integer method
			is much less accurate than the other two.

	-restart N	Emit a JPEG restart marker every N MCU rows, or every
			N MCU blocks if "B" is attached to the number.
			-restart 0 (the default) means no restart markers.

	-smooth N	Smooth the input image to eliminate dithering noise.
			N, ranging from 1 to 100, indicates the strength of
			smoothing.  0 (the default) means no smoothing.

	-maxmemory N	Set limit for amount of memory to use in processing
			large images.  Value is in thousands of bytes, or
			millions of bytes if "M" is attached to the number.
			For example, -max 4m selects 4000000 bytes.  If more
			space is needed, temporary files will be used.

	-verbose	Enable debug printout.  More -v's give more printout.
	or  -debug	Also, version information is printed at startup.

The -restart option inserts extra markers that allow a JPEG decoder to
resynchronize after a transmission error.  Without restart markers, any damage
to a compressed file will usually ruin the image from the point of the error
to the end of the image; with restart markers, the damage is usually confined
to the portion of the image up to the next restart marker.  Of course, the
restart markers occupy extra space.  We recommend -restart 1 for images that
will be transmitted across unreliable networks such as Usenet.

The -smooth option filters the input to eliminate fine-scale noise.  This is
often useful when converting dithered images to JPEG: a moderate smoothing
factor of 10 to 50 gets rid of dithering patterns in the input file, resulting
in a smaller JPEG file and a better-looking image.  Too large a smoothing
factor will visibly blur the image, however.

Switches for wizards:

	-baseline	Force baseline-compatible quantization tables to be
			generated.  This clamps quantization values to 8 bits
			even at low quality settings.  (This switch is poorly
			named, since it does not ensure that the output is
			actually baseline JPEG.  For example, you can use
			-baseline and -progressive together.)

	-qtables file	Use the quantization tables given in the specified
			text file.

	-qslots N[,...] Select which quantization table to use for each color
			component.

	-sample HxV[,...]  Set JPEG sampling factors for each color component.

	-scans file	Use the scan script given in the specified text file.

The "wizard" switches are intended for experimentation with JPEG.  If you
don't know what you are doing, DON'T USE THEM.  These switches are documented
further in the file wizard.doc.


DJPEG DETAILS

The basic command line switches for djpeg are:

	-colors N	Reduce image to at most N colors.  This reduces the
	or -quantize N	number of colors used in the output image, so that it
			can be displayed on a colormapped display or stored in
			a colormapped file format.  For example, if you have
			an 8-bit display, you'd need to reduce to 256 or fewer
			colors.  (-colors is the recommended name, -quantize
			is provided only for backwards compatibility.)

	-fast		Select recommended processing options for fast, low
			quality output.  (The default options are chosen for
			highest quality output.)  Currently, this is equivalent
			to "-dct fast -nosmooth -onepass -dither ordered".

	-grayscale	Force gray-scale output even if JPEG file is color.
			Useful for viewing on monochrome displays; also,
			djpeg runs noticeably faster in this mode.

	-scale M/N	Scale the output image by a factor M/N.  Currently
			the scale factor must be 1/1, 1/2, 1/4, or 1/8.
			Scaling is handy if the image is larger than your
			screen; also, djpeg runs much faster when scaling
			down the output.

	-bmp		Select BMP output format (Windows flavor).  8-bit
			colormapped format is emitted if -colors or -grayscale
			is specified, or if the JPEG file is gray-scale;
			otherwise, 24-bit full-color format is emitted.

	-gif		Select GIF output format.  Since GIF does not support
			more than 256 colors, -colors 256 is assumed (unless
			you specify a smaller number of colors).  If you
			specify -fast, the default number of colors is 216.

	-os2		Select BMP output format (OS/2 1.x flavor).  8-bit
			colormapped format is emitted if -colors or -grayscale
			is specified, or if the JPEG file is gray-scale;
			otherwise, 24-bit full-color format is emitted.

	-pnm		Select PBMPLUS (PPM/PGM) output format (this is the
			default format).  PGM is emitted if the JPEG file is
			gray-scale or if -grayscale is specified; otherwise
			PPM is emitted.

	-rle		Select RLE output format.  (Requires URT library.)

	-targa		Select Targa output format.  Gray-scale format is
			emitted if the JPEG file is gray-scale or if
			-grayscale is specified; otherwise, colormapped format
			is emitted if -colors is specified; otherwise, 24-bit
			full-color format is emitted.

Switches for advanced users:

	-dct int	Use integer DCT method (default).
	-dct fast	Use fast integer DCT (less accurate).
	-dct float	Use floating-point DCT method.
			The float method is very slightly more accurate than
			the int method, but is much slower unless your machine
			has very fast floating-point hardware.  Also note that
			results of the floating-point method may vary slightly
			across machines, while the integer methods should give
			the same results everywhere.  The fast integer method
			is much less accurate than the other two.

	-dither fs	Use Floyd-Steinberg dithering in color quantization.
	-dither ordered	Use ordered dithering in color quantization.
	-dither none	Do not use dithering in color quantization.
			By default, Floyd-Steinberg dithering is applied when
			quantizing colors; this is slow but usually produces
			the best results.  Ordered dither is a compromise
			between speed and quality; no dithering is fast but
			usually looks awful.  Note that these switches have
			no effect unless color quantization is being done.
			Ordered dither is only available in -onepass mode.

	-map FILE	Quantize to the colors used in the specified image
			file.  This is useful for producing multiple files
			with identical color maps, or for forcing a predefined
			set of colors to be used.  The FILE must be a GIF
			or PPM file.  This option overrides -colors and
			-onepass.

	-nosmooth	Use a faster, lower-quality upsampling routine.

	-onepass	Use one-pass instead of two-pass color quantization.
			The one-pass method is faster and needs less memory,
			but it produces a lower-quality image.  -onepass is
			ignored unless you also say -colors N.  Also,
			the one-pass method is always used for gray-scale
			output (the two-pass method is no improvement then).

	-maxmemory N	Set limit for amount of memory to use in processing
			large images.  Value is in thousands of bytes, or
			millions of bytes if "M" is attached to the number.
			For example, -max 4m selects 4000000 bytes.  If more
			space is needed, temporary files will be used.

	-verbose	Enable debug printout.  More -v's give more printout.
	or  -debug	Also, version information is printed at startup.


HINTS FOR CJPEG

Color GIF files are not the ideal input for JPEG; JPEG is really intended for
compressing full-color (24-bit) images.  In particular, don't try to convert
cartoons, line drawings, and other images that have only a few distinct
colors.  GIF works great on these, JPEG does not.  If you want to convert a
GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options
to get a satisfactory conversion.  -smooth 10 or so is often helpful.

Avoid running an image through a series of JPEG compression/decompression
cycles.  Image quality loss will accumulate; after ten or so cycles the image
may be noticeably worse than it was after one cycle.  It's best to use a
lossless format while manipulating an image, then convert to JPEG format when
you are ready to file the image away.

The -optimize option to cjpeg is worth using when you are making a "final"
version for posting or archiving.  It's also a win when you are using low
quality settings to make very small JPEG files; the percentage improvement
is often a lot more than it is on larger files.  (At present, -optimize
mode is always selected when generating progressive JPEG files.)

GIF input files are no longer supported, to avoid the Unisys LZW patent.
Use a Unisys-licensed program if you need to read a GIF file.  (Conversion
of GIF files to JPEG is usually a bad idea anyway.)


HINTS FOR DJPEG

To get a quick preview of an image, use the -grayscale and/or -scale switches.
"-grayscale -scale 1/8" is the fastest case.

Several options are available that trade off image quality to gain speed.
"-fast" turns on the recommended settings.

"-dct fast" and/or "-nosmooth" gain speed at a small sacrifice in quality.
When producing a color-quantized image, "-onepass -dither ordered" is fast but
much lower quality than the default behavior.  "-dither none" may give
acceptable results in two-pass mode, but is seldom tolerable in one-pass mode.

If you are fortunate enough to have very fast floating point hardware,
"-dct float" may be even faster than "-dct fast".  But on most machines
"-dct float" is slower than "-dct int"; in this case it is not worth using,
because its theoretical accuracy advantage is too small to be significant
in practice.

Two-pass color quantization requires a good deal of memory; on MS-DOS machines
it may run out of memory even with -maxmemory 0.  In that case you can still
decompress, with some loss of image quality, by specifying -onepass for
one-pass quantization.

To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files.  These
are larger than they should be, but are readable by standard GIF decoders.


HINTS FOR BOTH PROGRAMS

If more space is needed than will fit in the available main memory (as
determined by -maxmemory), temporary files will be used.  (MS-DOS versions
will try to get extended or expanded memory first.)  The temporary files are
often rather large: in typical cases they occupy three bytes per pixel, for
example 3*800*600 = 1.44Mb for an 800x600 image.  If you don't have enough
free disk space, leave out -progressive and -optimize (for cjpeg) or specify
-onepass (for djpeg).

On MS-DOS, the temporary files are created in the directory named by the TMP
or TEMP environment variable, or in the current directory if neither of those
exist.  Amiga implementations put the temp files in the directory named by
JPEGTMP:, so be sure to assign JPEGTMP: to a disk partition with adequate free
space.

The default memory usage limit (-maxmemory) is set when the software is
compiled.  If you get an "insufficient memory" error, try specifying a smaller
-maxmemory value, even -maxmemory 0 to use the absolute minimum space.  You
may want to recompile with a smaller default value if this happens often.

On machines that have "environment" variables, you can define the environment
variable JPEGMEM to set the default memory limit.  The value is specified as
described for the -maxmemory switch.  JPEGMEM overrides the default value
specified when the program was compiled, and itself is overridden by an
explicit -maxmemory switch.

On MS-DOS machines, -maxmemory is the amount of main (conventional) memory to
use.  (Extended or expanded memory is also used if available.)  Most
DOS-specific versions of this software do their own memory space estimation
and do not need you to specify -maxmemory.


JPEGTRAN

jpegtran performs various useful transformations of JPEG files.
It can translate the coded representation from one variant of JPEG to another,
for example from baseline JPEG to progressive JPEG or vice versa.  It can also
perform some rearrangements of the image data, for example turning an image
from landscape to portrait format by rotation.

jpegtran works by rearranging the compressed data (DCT coefficients), without
ever fully decoding the image.  Therefore, its transformations are lossless:
there is no image degradation at all, which would not be true if you used
djpeg followed by cjpeg to accomplish the same conversion.  But by the same
token, jpegtran cannot perform lossy operations such as changing the image
quality.

jpegtran uses a command line syntax similar to cjpeg or djpeg.
On Unix-like systems, you say:
	jpegtran [switches] [inputfile] >outputfile
On most non-Unix systems, you say:
	jpegtran [switches] inputfile outputfile
where both the input and output files are JPEG files.

To specify the coded JPEG representation used in the output file,
jpegtran accepts a subset of the switches recognized by cjpeg:
	-optimize	Perform optimization of entropy encoding parameters.
	-progressive	Create progressive JPEG file.
	-restart N	Emit a JPEG restart marker every N MCU rows, or every
			N MCU blocks if "B" is attached to the number.
	-scans file	Use the scan script given in the specified text file.
See the previous discussion of cjpeg for more details about these switches.
If you specify none of these switches, you get a plain baseline-JPEG output
file.  The quality setting and so forth are determined by the input file.

The image can be losslessly transformed by giving one of these switches:
	-flip horizontal	Mirror image horizontally (left-right).
	-flip vertical		Mirror image vertically (top-bottom).
	-rotate 90		Rotate image 90 degrees clockwise.
	-rotate 180		Rotate image 180 degrees.
	-rotate 270		Rotate image 270 degrees clockwise (or 90 ccw).
	-transpose		Transpose image (across UL-to-LR axis).
	-transverse		Transverse transpose (across UR-to-LL axis).

The transpose transformation has no restrictions regarding image dimensions.
The other transformations operate rather oddly if the image dimensions are not
a multiple of the iMCU size (usually 8 or 16 pixels), because they can only
transform complete blocks of DCT coefficient data in the desired way.

jpegtran's default behavior when transforming an odd-size image is designed
to preserve exact reversibility and mathematical consistency of the
transformation set.  As stated, transpose is able to flip the entire image
area.  Horizontal mirroring leaves any partial iMCU column at the right edge
untouched, but is able to flip all rows of the image.  Similarly, vertical
mirroring leaves any partial iMCU row at the bottom edge untouched, but is
able to flip all columns.  The other transforms can be built up as sequences
of transpose and flip operations; for consistency, their actions on edge
pixels are defined to be the same as the end result of the corresponding
transpose-and-flip sequence.

For practical use, you may prefer to discard any untransformable edge pixels
rather than having a strange-looking strip along the right and/or bottom edges
of a transformed image.  To do this, add the -trim switch:
	-trim		Drop non-transformable edge blocks.
Obviously, a transformation with -trim is not reversible, so strictly speaking
jpegtran with this switch is not lossless.  Also, the expected mathematical
equivalences between the transformations no longer hold.  For example,
"-rot 270 -trim" trims only the bottom edge, but "-rot 90 -trim" followed by
"-rot 180 -trim" trims both edges.

Another not-strictly-lossless transformation switch is:
	-grayscale	Force grayscale output.
This option discards the chrominance channels if the input image is YCbCr
(ie, a standard color JPEG), resulting in a grayscale JPEG file.  The
luminance channel is preserved exactly, so this is a better method of reducing
to grayscale than decompression, conversion, and recompression.  This switch
is particularly handy for fixing a monochrome picture that was mistakenly
encoded as a color JPEG.  (In such a case, the space savings from getting rid
of the near-empty chroma channels won't be large; but the decoding time for
a grayscale JPEG is substantially less than that for a color JPEG.)

jpegtran also recognizes these switches that control what to do with "extra"
markers, such as comment blocks:
	-copy none	Copy no extra markers from source file.  This setting
			suppresses all comments and other excess baggage
			present in the source file.
	-copy comments	Copy only comment markers.  This setting copies
			comments from the source file, but discards
			any other inessential data. 
	-copy all	Copy all extra markers.  This setting preserves
			miscellaneous markers found in the source file, such
			as JFIF thumbnails and Photoshop settings.  In some
			files these extra markers can be sizable.
The default behavior is -copy comments.  (Note: in IJG releases v6 and v6a,
jpegtran always did the equivalent of -copy none.)

Additional switches recognized by jpegtran are:
	-outfile filename
	-maxmemory N
	-verbose
	-debug
These work the same as in cjpeg or djpeg.


THE COMMENT UTILITIES

The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
Although the standard doesn't actually define what COM blocks are for, they
are widely used to hold user-supplied text strings.  This lets you add
annotations, titles, index terms, etc to your JPEG files, and later retrieve
them as text.  COM blocks do not interfere with the image stored in the JPEG
file.  The maximum size of a COM block is 64K, but you can have as many of
them as you like in one JPEG file.

We provide two utility programs to display COM block contents and add COM
blocks to a JPEG file.

rdjpgcom searches a JPEG file and prints the contents of any COM blocks on
standard output.  The command line syntax is
	rdjpgcom [-verbose] [inputfilename]
The switch "-verbose" (or just "-v") causes rdjpgcom to also display the JPEG
image dimensions.  If you omit the input file name from the command line,
the JPEG file is read from standard input.  (This may not work on some
operating systems, if binary data can't be read from stdin.)

wrjpgcom adds a COM block, containing text you provide, to a JPEG file.
Ordinarily, the COM block is added after any existing COM blocks, but you
can delete the old COM blocks if you wish.  wrjpgcom produces a new JPEG
file; it does not modify the input file.  DO NOT try to overwrite the input
file by directing wrjpgcom's output back into it; on most systems this will
just destroy your file.

The command line syntax for wrjpgcom is similar to cjpeg's.  On Unix-like
systems, it is
	wrjpgcom [switches] [inputfilename]
The output file is written to standard output.  The input file comes from
the named file, or from standard input if no input file is named.

On most non-Unix systems, the syntax is
	wrjpgcom [switches] inputfilename outputfilename
where both input and output file names must be given explicitly.

wrjpgcom understands three switches:
	-replace		 Delete any existing COM blocks from the file.
	-comment "Comment text"	 Supply new COM text on command line.
	-cfile name		 Read text for new COM block from named file.
(Switch names can be abbreviated.)  If you have only one line of comment text
to add, you can provide it on the command line with -comment.  The comment
text must be surrounded with quotes so that it is treated as a single
argument.  Longer comments can be read from a text file.

If you give neither -comment nor -cfile, then wrjpgcom will read the comment
text from standard input.  (In this case an input image file name MUST be
supplied, so that the source JPEG file comes from somewhere else.)  You can
enter multiple lines, up to 64KB worth.  Type an end-of-file indicator
(usually control-D or control-Z) to terminate the comment text entry.

wrjpgcom will not add a COM block if the provided comment string is empty.
Therefore -replace -comment "" can be used to delete all COM blocks from a
file.

These utility programs do not depend on the IJG JPEG library.  In
particular, the source code for rdjpgcom is intended as an illustration of
the minimum amount of code required to parse a JPEG file header correctly.

--- NEW FILE: rdjpgcom.c ---
/*
 * rdjpgcom.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a very simple stand-alone application that displays
 * the text in COM (comment) markers in a JFIF file.
 * This may be useful as an example of the minimum logic needed to parse
 * JPEG markers.
 */

#define JPEG_CJPEG_DJPEG	/* to get the command-line config symbols */
#include "jinclude.h"		/* get auto-config symbols, <stdio.h> */

#include <ctype.h>		/* to declare isupper(), tolower() */
#ifdef USE_SETMODE
#include <fcntl.h>		/* to declare setmode()'s parameter macros */
/* If you have setmode() but not <io.h>, just delete this line: */
#include <io.h>			/* to declare setmode() */
#endif

#ifdef USE_CCOMMAND		/* command-line reader for Macintosh */
#ifdef __MWERKS__
#include <SIOUX.h>              /* Metrowerks needs this */
#include <console.h>		/* ... and this */
#endif
#ifdef THINK_C
#include <console.h>		/* Think declares it here */
#endif
#endif

#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */
#define READ_BINARY	"r"
#else
#ifdef VMS			/* VMS is very nonstandard */
#define READ_BINARY	"rb", "ctx=stm"
#else				/* standard ANSI-compliant case */
#define READ_BINARY	"rb"
#endif
#endif

#ifndef EXIT_FAILURE		/* define exit() codes if not provided */
#define EXIT_FAILURE  1
#endif
#ifndef EXIT_SUCCESS
#ifdef VMS
#define EXIT_SUCCESS  1		/* VMS is very nonstandard */
#else
#define EXIT_SUCCESS  0
#endif
#endif


/*
 * These macros are used to read the input file.
 * To reuse this code in another application, you might need to change these.
 */

static FILE * infile;		/* input JPEG file */

/* Return next input byte, or EOF if no more */
#define NEXTBYTE()  getc(infile)


/* Error exit handler */
#define ERREXIT(msg)  (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE))


/* Read one byte, testing for EOF */
static int
read_1_byte (void)
{
  int c;

  c = NEXTBYTE();
  if (c == EOF)
    ERREXIT("Premature EOF in JPEG file");
  return c;
}

/* Read 2 bytes, convert to unsigned int */
/* All 2-byte quantities in JPEG markers are MSB first */
static unsigned int
read_2_bytes (void)
{
  int c1, c2;

  c1 = NEXTBYTE();
  if (c1 == EOF)
    ERREXIT("Premature EOF in JPEG file");
  c2 = NEXTBYTE();
  if (c2 == EOF)
    ERREXIT("Premature EOF in JPEG file");
  return (((unsigned int) c1) << 8) + ((unsigned int) c2);
}


/*
 * JPEG markers consist of one or more 0xFF bytes, followed by a marker
 * code byte (which is not an FF).  Here are the marker codes of interest
 * in this program.  (See jdmarker.c for a more complete list.)
 */

#define M_SOF0  0xC0		/* Start Of Frame N */
#define M_SOF1  0xC1		/* N indicates which compression process */
#define M_SOF2  0xC2		/* Only SOF0-SOF2 are now in common use */
#define M_SOF3  0xC3
#define M_SOF5  0xC5		/* NB: codes C4 and CC are NOT SOF markers */
#define M_SOF6  0xC6
#define M_SOF7  0xC7
#define M_SOF9  0xC9
#define M_SOF10 0xCA
#define M_SOF11 0xCB
#define M_SOF13 0xCD
#define M_SOF14 0xCE
#define M_SOF15 0xCF
#define M_SOI   0xD8		/* Start Of Image (beginning of datastream) */
#define M_EOI   0xD9		/* End Of Image (end of datastream) */
#define M_SOS   0xDA		/* Start Of Scan (begins compressed data) */
#define M_APP0	0xE0		/* Application-specific marker, type N */
#define M_APP12	0xEC		/* (we don't bother to list all 16 APPn's) */
#define M_COM   0xFE		/* COMment */


/*
 * Find the next JPEG marker and return its marker code.
 * We expect at least one FF byte, possibly more if the compressor used FFs
 * to pad the file.
 * There could also be non-FF garbage between markers.  The treatment of such
 * garbage is unspecified; we choose to skip over it but emit a warning msg.
 * NB: this routine must not be used after seeing SOS marker, since it will
 * not deal correctly with FF/00 sequences in the compressed image data...
 */

static int
next_marker (void)
{
  int c;
  int discarded_bytes = 0;

  /* Find 0xFF byte; count and skip any non-FFs. */
  c = read_1_byte();
  while (c != 0xFF) {
    discarded_bytes++;
    c = read_1_byte();
  }
  /* Get marker code byte, swallowing any duplicate FF bytes.  Extra FFs
   * are legal as pad bytes, so don't count them in discarded_bytes.
   */
  do {
    c = read_1_byte();
  } while (c == 0xFF);

  if (discarded_bytes != 0) {
    fprintf(stderr, "Warning: garbage data found in JPEG file\n");
  }

  return c;
}


/*
 * Read the initial marker, which should be SOI.
 * For a JFIF file, the first two bytes of the file should be literally
 * 0xFF M_SOI.  To be more general, we could use next_marker, but if the
 * input file weren't actually JPEG at all, next_marker might read the whole
 * file and then return a misleading error message...
 */

static int
first_marker (void)
{
  int c1, c2;

  c1 = NEXTBYTE();
  c2 = NEXTBYTE();
  if (c1 != 0xFF || c2 != M_SOI)
    ERREXIT("Not a JPEG file");
  return c2;
}


/*
 * Most types of marker are followed by a variable-length parameter segment.
 * This routine skips over the parameters for any marker we don't otherwise
 * want to process.
 * Note that we MUST skip the parameter segment explicitly in order not to
 * be fooled by 0xFF bytes that might appear within the parameter segment;
 * such bytes do NOT introduce new markers.
 */

static void
skip_variable (void)
/* Skip over an unknown or uninteresting variable-length marker */
{
  unsigned int length;

  /* Get the marker parameter length count */
  length = read_2_bytes();
  /* Length includes itself, so must be at least 2 */
  if (length < 2)
    ERREXIT("Erroneous JPEG marker length");
  length -= 2;
  /* Skip over the remaining bytes */
  while (length > 0) {
    (void) read_1_byte();
    length--;
  }
}


/*
 * Process a COM marker.
 * We want to print out the marker contents as legible text;
 * we must guard against non-text junk and varying newline representations.
 */

static void
process_COM (void)
{
  unsigned int length;
  int ch;
  int lastch = 0;

  /* Get the marker parameter length count */
  length = read_2_bytes();
  /* Length includes itself, so must be at least 2 */
  if (length < 2)
    ERREXIT("Erroneous JPEG marker length");
  length -= 2;

  while (length > 0) {
    ch = read_1_byte();
    /* Emit the character in a readable form.
     * Nonprintables are converted to \nnn form,
     * while \ is converted to \\.
     * Newlines in CR, CR/LF, or LF form will be printed as one newline.
     */
    if (ch == '\r') {
      printf("\n");
    } else if (ch == '\n') {
      if (lastch != '\r')
	printf("\n");
    } else if (ch == '\\') {
      printf("\\\\");
    } else if (isprint(ch)) {
      putc(ch, stdout);
    } else {
      printf("\\%03o", ch);
    }
    lastch = ch;
    length--;
  }
  printf("\n");
}


/*
 * Process a SOFn marker.
 * This code is only needed if you want to know the image dimensions...
 */

static void
process_SOFn (int marker)
{
  unsigned int length;
  unsigned int image_height, image_width;
  int data_precision, num_components;
  const char * process;
  int ci;

  length = read_2_bytes();	/* usual parameter length count */

  data_precision = read_1_byte();
  image_height = read_2_bytes();
  image_width = read_2_bytes();
  num_components = read_1_byte();

  switch (marker) {
  case M_SOF0:	process = "Baseline";  break;
  case M_SOF1:	process = "Extended sequential";  break;
  case M_SOF2:	process = "Progressive";  break;
  case M_SOF3:	process = "Lossless";  break;
  case M_SOF5:	process = "Differential sequential";  break;
  case M_SOF6:	process = "Differential progressive";  break;
  case M_SOF7:	process = "Differential lossless";  break;
  case M_SOF9:	process = "Extended sequential, arithmetic coding";  break;
  case M_SOF10:	process = "Progressive, arithmetic coding";  break;
  case M_SOF11:	process = "Lossless, arithmetic coding";  break;
  case M_SOF13:	process = "Differential sequential, arithmetic coding";  break;
  case M_SOF14:	process = "Differential progressive, arithmetic coding"; break;
  case M_SOF15:	process = "Differential lossless, arithmetic coding";  break;
  default:	process = "Unknown";  break;
  }

  printf("JPEG image is %uw * %uh, %d color components, %d bits per sample\n",
	 image_width, image_height, num_components, data_precision);
  printf("JPEG process: %s\n", process);

  if (length != (unsigned int) (8 + num_components * 3))
    ERREXIT("Bogus SOF marker length");

  for (ci = 0; ci < num_components; ci++) {
    (void) read_1_byte();	/* Component ID code */
    (void) read_1_byte();	/* H, V sampling factors */
    (void) read_1_byte();	/* Quantization table number */
  }
}


/*
 * Parse the marker stream until SOS or EOI is seen;
 * display any COM markers.
 * While the companion program wrjpgcom will always insert COM markers before
 * SOFn, other implementations might not, so we scan to SOS before stopping.
 * If we were only interested in the image dimensions, we would stop at SOFn.
 * (Conversely, if we only cared about COM markers, there would be no need
 * for special code to handle SOFn; we could treat it like other markers.)
 */

static int
scan_JPEG_header (int verbose)
{
  int marker;

  /* Expect SOI at start of file */
  if (first_marker() != M_SOI)
    ERREXIT("Expected SOI marker first");

  /* Scan miscellaneous markers until we reach SOS. */
  for (;;) {
    marker = next_marker();
    switch (marker) {
      /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be,
       * treated as SOFn.  C4 in particular is actually DHT.
       */
    case M_SOF0:		/* Baseline */
    case M_SOF1:		/* Extended sequential, Huffman */
    case M_SOF2:		/* Progressive, Huffman */
    case M_SOF3:		/* Lossless, Huffman */
    case M_SOF5:		/* Differential sequential, Huffman */
    case M_SOF6:		/* Differential progressive, Huffman */
    case M_SOF7:		/* Differential lossless, Huffman */
    case M_SOF9:		/* Extended sequential, arithmetic */
    case M_SOF10:		/* Progressive, arithmetic */
    case M_SOF11:		/* Lossless, arithmetic */
    case M_SOF13:		/* Differential sequential, arithmetic */
    case M_SOF14:		/* Differential progressive, arithmetic */
    case M_SOF15:		/* Differential lossless, arithmetic */
      if (verbose)
	process_SOFn(marker);
      else
	skip_variable();
      break;

    case M_SOS:			/* stop before hitting compressed data */
      return marker;

    case M_EOI:			/* in case it's a tables-only JPEG stream */
      return marker;

    case M_COM:
      process_COM();
      break;

    case M_APP12:
      /* Some digital camera makers put useful textual information into
       * APP12 markers, so we print those out too when in -verbose mode.
       */
      if (verbose) {
	printf("APP12 contains:\n");
	process_COM();
      } else
	skip_variable();
      break;

    default:			/* Anything else just gets skipped */
      skip_variable();		/* we assume it has a parameter count... */
      break;
    }
  } /* end loop */
}


/* Command line parsing code */

static const char * progname;	/* program name for error messages */


static void
usage (void)
/* complain about bad command line */
{
  fprintf(stderr, "rdjpgcom displays any textual comments in a JPEG file.\n");

  fprintf(stderr, "Usage: %s [switches] [inputfile]\n", progname);

  fprintf(stderr, "Switches (names may be abbreviated):\n");
  fprintf(stderr, "  -verbose    Also display dimensions of JPEG image\n");

  exit(EXIT_FAILURE);
}


static int
keymatch (char * arg, const char * keyword, int minchars)
/* Case-insensitive matching of (possibly abbreviated) keyword switches. */
/* keyword is the constant keyword (must be lower case already), */
/* minchars is length of minimum legal abbreviation. */
{
  register int ca, ck;
  register int nmatched = 0;

  while ((ca = *arg++) != '\0') {
    if ((ck = *keyword++) == '\0')
      return 0;			/* arg longer than keyword, no good */
    if (isupper(ca))		/* force arg to lcase (assume ck is already) */
      ca = tolower(ca);
    if (ca != ck)
      return 0;			/* no good */
    nmatched++;			/* count matched characters */
  }
  /* reached end of argument; fail if it's too short for unique abbrev */
  if (nmatched < minchars)
    return 0;
  return 1;			/* A-OK */
}


/*
 * The main program.
 */

int
main (int argc, char **argv)
{
  int argn;
  char * arg;
  int verbose = 0;

  /* On Mac, fetch a command line. */
#ifdef USE_CCOMMAND
  argc = ccommand(&argv);
#endif

  progname = argv[0];
  if (progname == NULL || progname[0] == 0)
    progname = "rdjpgcom";	/* in case C library doesn't provide it */

  /* Parse switches, if any */
  for (argn = 1; argn < argc; argn++) {
    arg = argv[argn];
    if (arg[0] != '-')
      break;			/* not switch, must be file name */
    arg++;			/* advance over '-' */
    if (keymatch(arg, "verbose", 1)) {
      verbose++;
    } else
      usage();
  }

  /* Open the input file. */
  /* Unix style: expect zero or one file name */
  if (argn < argc-1) {
    fprintf(stderr, "%s: only one input file\n", progname);
    usage();
  }
  if (argn < argc) {
    if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default input file is stdin */
#ifdef USE_SETMODE		/* need to hack file mode? */
    setmode(fileno(stdin), O_BINARY);
#endif
#ifdef USE_FDOPEN		/* need to re-open in binary mode? */
    if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open stdin\n", progname);
      exit(EXIT_FAILURE);
    }
#else
    infile = stdin;
#endif
  }

  /* Scan the JPEG headers. */
  (void) scan_JPEG_header(verbose);

  /* All done. */
  exit(EXIT_SUCCESS);
  return 0;			/* suppress no-return-value warnings */
}

--- NEW FILE: jpegtran.c ---
/*
 * jpegtran.c
 *
 * Copyright (C) 1995-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a command-line user interface for JPEG transcoding.
 * It is very similar to cjpeg.c, but provides lossless transcoding between
 * different JPEG file formats.  It also provides some lossless and sort-of-
 * lossless transformations of JPEG data.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */
#include "transupp.h"		/* Support routines for jpegtran */
#include "jversion.h"		/* for version message */

#ifdef USE_CCOMMAND		/* command-line reader for Macintosh */
#ifdef __MWERKS__
#include <SIOUX.h>              /* Metrowerks needs this */
#include <console.h>		/* ... and this */
#endif
#ifdef THINK_C
#include <console.h>		/* Think declares it here */
#endif
#endif


/*
 * Argument-parsing code.
 * The switch parser is designed to be useful with DOS-style command line
 * syntax, ie, intermixed switches and file names, where only the switches
 * to the left of a given file name affect processing of that file.
 * The main program in this file doesn't actually use this capability...
 */


static const char * progname;	/* program name for error messages */
static char * outfilename;	/* for -outfile switch */
static JCOPY_OPTION copyoption;	/* -copy switch */
static jpeg_transform_info transformoption; /* image transformation options */


LOCAL(void)
usage (void)
/* complain about bad command line */
{
  fprintf(stderr, "usage: %s [switches] ", progname);
#ifdef TWO_FILE_COMMANDLINE
  fprintf(stderr, "inputfile outputfile\n");
#else
  fprintf(stderr, "[inputfile]\n");
#endif

  fprintf(stderr, "Switches (names may be abbreviated):\n");
  fprintf(stderr, "  -copy none     Copy no extra markers from source file\n");
  fprintf(stderr, "  -copy comments Copy only comment markers (default)\n");
  fprintf(stderr, "  -copy all      Copy all extra markers\n");
#ifdef ENTROPY_OPT_SUPPORTED
  fprintf(stderr, "  -optimize      Optimize Huffman table (smaller file, but slow compression)\n");
#endif
#ifdef C_PROGRESSIVE_SUPPORTED
  fprintf(stderr, "  -progressive   Create progressive JPEG file\n");
#endif
#if TRANSFORMS_SUPPORTED
  fprintf(stderr, "Switches for modifying the image:\n");
  fprintf(stderr, "  -grayscale     Reduce to grayscale (omit color data)\n");
  fprintf(stderr, "  -flip [horizontal|vertical]  Mirror image (left-right or top-bottom)\n");
  fprintf(stderr, "  -rotate [90|180|270]         Rotate image (degrees clockwise)\n");
  fprintf(stderr, "  -transpose     Transpose image\n");
  fprintf(stderr, "  -transverse    Transverse transpose image\n");
  fprintf(stderr, "  -trim          Drop non-transformable edge blocks\n");
#endif /* TRANSFORMS_SUPPORTED */
  fprintf(stderr, "Switches for advanced users:\n");
  fprintf(stderr, "  -restart N     Set restart interval in rows, or in blocks with B\n");
  fprintf(stderr, "  -maxmemory N   Maximum memory to use (in kbytes)\n");
  fprintf(stderr, "  -outfile name  Specify name for output file\n");
  fprintf(stderr, "  -verbose  or  -debug   Emit debug output\n");
  fprintf(stderr, "Switches for wizards:\n");
#ifdef C_ARITH_CODING_SUPPORTED
  fprintf(stderr, "  -arithmetic    Use arithmetic coding\n");
#endif
#ifdef C_MULTISCAN_FILES_SUPPORTED
  fprintf(stderr, "  -scans file    Create multi-scan JPEG per script file\n");
#endif
  exit(EXIT_FAILURE);
}


LOCAL(void)
select_transform (JXFORM_CODE transform)
/* Silly little routine to detect multiple transform options,
 * which we can't handle.
 */
{
#if TRANSFORMS_SUPPORTED
  if (transformoption.transform == JXFORM_NONE ||
      transformoption.transform == transform) {
    transformoption.transform = transform;
  } else {
    fprintf(stderr, "%s: can only do one image transformation at a time\n",
	    progname);
    usage();
  }
#else
  fprintf(stderr, "%s: sorry, image transformation was not compiled\n",
	  progname);
  exit(EXIT_FAILURE);
#endif
}


LOCAL(int)
parse_switches (j_compress_ptr cinfo, int argc, char **argv,
		int last_file_arg_seen, boolean for_real)
/* Parse optional switches.
 * Returns argv[] index of first file-name argument (== argc if none).
 * Any file names with indexes <= last_file_arg_seen are ignored;
 * they have presumably been processed in a previous iteration.
 * (Pass 0 for last_file_arg_seen on the first or only iteration.)
 * for_real is FALSE on the first (dummy) pass; we may skip any expensive
 * processing.
 */
{
  int argn;
  char * arg;
  boolean simple_progressive;
  char * scansarg = NULL;	/* saves -scans parm if any */

  /* Set up default JPEG parameters. */
  simple_progressive = FALSE;
  outfilename = NULL;
  copyoption = JCOPYOPT_DEFAULT;
  transformoption.transform = JXFORM_NONE;
  transformoption.trim = FALSE;
  transformoption.force_grayscale = FALSE;
  cinfo->err->trace_level = 0;

  /* Scan command line options, adjust parameters */

  for (argn = 1; argn < argc; argn++) {
    arg = argv[argn];
    if (*arg != '-') {
      /* Not a switch, must be a file name argument */
      if (argn <= last_file_arg_seen) {
	outfilename = NULL;	/* -outfile applies to just one input file */
	continue;		/* ignore this name if previously processed */
      }
      break;			/* else done parsing switches */
    }
    arg++;			/* advance past switch marker character */

    if (keymatch(arg, "arithmetic", 1)) {
      /* Use arithmetic coding. */
#ifdef C_ARITH_CODING_SUPPORTED
      cinfo->arith_code = TRUE;
#else
      fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "copy", 1)) {
      /* Select which extra markers to copy. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "none", 1)) {
	copyoption = JCOPYOPT_NONE;
      } else if (keymatch(argv[argn], "comments", 1)) {
	copyoption = JCOPYOPT_COMMENTS;
      } else if (keymatch(argv[argn], "all", 1)) {
	copyoption = JCOPYOPT_ALL;
      } else
	usage();

    } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
      /* Enable debug printouts. */
      /* On first -d, print version identification */
      static boolean printed_version = FALSE;

      if (! printed_version) {
	fprintf(stderr, "Independent JPEG Group's JPEGTRAN, version %s\n%s\n",
		JVERSION, JCOPYRIGHT);
	printed_version = TRUE;
      }
      cinfo->err->trace_level++;

    } else if (keymatch(arg, "flip", 1)) {
      /* Mirror left-right or top-bottom. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "horizontal", 1))
	select_transform(JXFORM_FLIP_H);
      else if (keymatch(argv[argn], "vertical", 1))
	select_transform(JXFORM_FLIP_V);
      else
	usage();

    } else if (keymatch(arg, "grayscale", 1) || keymatch(arg, "greyscale",1)) {
      /* Force to grayscale. */
#if TRANSFORMS_SUPPORTED
      transformoption.force_grayscale = TRUE;
#else
      select_transform(JXFORM_NONE);	/* force an error */
#endif

    } else if (keymatch(arg, "maxmemory", 3)) {
      /* Maximum memory in Kb (or Mb with 'm'). */
      long lval;
      char ch = 'x';

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
	usage();
      if (ch == 'm' || ch == 'M')
	lval *= 1000L;
      cinfo->mem->max_memory_to_use = lval * 1000L;

    } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) {
      /* Enable entropy parm optimization. */
#ifdef ENTROPY_OPT_SUPPORTED
      cinfo->optimize_coding = TRUE;
#else
      fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "outfile", 4)) {
      /* Set output file name. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      outfilename = argv[argn];	/* save it away for later use */

    } else if (keymatch(arg, "progressive", 1)) {
      /* Select simple progressive mode. */
#ifdef C_PROGRESSIVE_SUPPORTED
      simple_progressive = TRUE;
      /* We must postpone execution until num_components is known. */
#else
      fprintf(stderr, "%s: sorry, progressive output was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "restart", 1)) {
      /* Restart interval in MCU rows (or in MCUs with 'b'). */
      long lval;
      char ch = 'x';

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
	usage();
      if (lval < 0 || lval > 65535L)
	usage();
      if (ch == 'b' || ch == 'B') {
	cinfo->restart_interval = (unsigned int) lval;
	cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */
      } else {
	cinfo->restart_in_rows = (int) lval;
	/* restart_interval will be computed during startup */
      }

    } else if (keymatch(arg, "rotate", 2)) {
      /* Rotate 90, 180, or 270 degrees (measured clockwise). */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "90", 2))
	select_transform(JXFORM_ROT_90);
      else if (keymatch(argv[argn], "180", 3))
	select_transform(JXFORM_ROT_180);
      else if (keymatch(argv[argn], "270", 3))
	select_transform(JXFORM_ROT_270);
      else
	usage();

    } else if (keymatch(arg, "scans", 1)) {
      /* Set scan script. */
#ifdef C_MULTISCAN_FILES_SUPPORTED
      if (++argn >= argc)	/* advance to next argument */
	usage();
      scansarg = argv[argn];
      /* We must postpone reading the file in case -progressive appears. */
#else
      fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "transpose", 1)) {
      /* Transpose (across UL-to-LR axis). */
      select_transform(JXFORM_TRANSPOSE);

    } else if (keymatch(arg, "transverse", 6)) {
      /* Transverse transpose (across UR-to-LL axis). */
      select_transform(JXFORM_TRANSVERSE);

    } else if (keymatch(arg, "trim", 3)) {
      /* Trim off any partial edge MCUs that the transform can't handle. */
      transformoption.trim = TRUE;

    } else {
      usage();			/* bogus switch */
    }
  }

  /* Post-switch-scanning cleanup */

  if (for_real) {

#ifdef C_PROGRESSIVE_SUPPORTED
    if (simple_progressive)	/* process -progressive; -scans can override */
      jpeg_simple_progression(cinfo);
#endif

#ifdef C_MULTISCAN_FILES_SUPPORTED
    if (scansarg != NULL)	/* process -scans if it was present */
      if (! read_scan_script(cinfo, scansarg))
	usage();
#endif
  }

  return argn;			/* return index of next arg (file name) */
}


/*
 * The main program.
 */

int
main (int argc, char **argv)
{
  struct jpeg_decompress_struct srcinfo;
  struct jpeg_compress_struct dstinfo;
  struct jpeg_error_mgr jsrcerr, jdsterr;
#ifdef PROGRESS_REPORT
  struct cdjpeg_progress_mgr progress;
#endif
  jvirt_barray_ptr * src_coef_arrays;
  jvirt_barray_ptr * dst_coef_arrays;
  int file_index;
  FILE * input_file;
  FILE * output_file;

  /* On Mac, fetch a command line. */
#ifdef USE_CCOMMAND
  argc = ccommand(&argv);
#endif

  progname = argv[0];
  if (progname == NULL || progname[0] == 0)
    progname = "jpegtran";	/* in case C library doesn't provide it */

  /* Initialize the JPEG decompression object with default error handling. */
  srcinfo.err = jpeg_std_error(&jsrcerr);
  jpeg_create_decompress(&srcinfo);
  /* Initialize the JPEG compression object with default error handling. */
  dstinfo.err = jpeg_std_error(&jdsterr);
  jpeg_create_compress(&dstinfo);

  /* Now safe to enable signal catcher.
   * Note: we assume only the decompression object will have virtual arrays.
   */
#ifdef NEED_SIGNAL_CATCHER
  enable_signal_catcher((j_common_ptr) &srcinfo);
#endif

  /* Scan command line to find file names.
   * It is convenient to use just one switch-parsing routine, but the switch
   * values read here are mostly ignored; we will rescan the switches after
   * opening the input file.  Also note that most of the switches affect the
   * destination JPEG object, so we parse into that and then copy over what
   * needs to affects the source too.
   */

  file_index = parse_switches(&dstinfo, argc, argv, 0, FALSE);
  jsrcerr.trace_level = jdsterr.trace_level;
  srcinfo.mem->max_memory_to_use = dstinfo.mem->max_memory_to_use;

#ifdef TWO_FILE_COMMANDLINE
  /* Must have either -outfile switch or explicit output file name */
  if (outfilename == NULL) {
    if (file_index != argc-2) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
    outfilename = argv[file_index+1];
  } else {
    if (file_index != argc-1) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
  }
#else
  /* Unix style: expect zero or one file name */
  if (file_index < argc-1) {
    fprintf(stderr, "%s: only one input file\n", progname);
    usage();
  }
#endif /* TWO_FILE_COMMANDLINE */

  /* Open the input file. */
  if (file_index < argc) {
    if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default input file is stdin */
    input_file = read_stdin();
  }

  /* Open the output file. */
  if (outfilename != NULL) {
    if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default output file is stdout */
    output_file = write_stdout();
  }

#ifdef PROGRESS_REPORT
  start_progress_monitor((j_common_ptr) &dstinfo, &progress);
#endif

  /* Specify data source for decompression */
  jpeg_stdio_src(&srcinfo, input_file);

  /* Enable saving of extra markers that we want to copy */
  jcopy_markers_setup(&srcinfo, copyoption);

  /* Read file header */
  (void) jpeg_read_header(&srcinfo, TRUE);

  /* Any space needed by a transform option must be requested before
   * jpeg_read_coefficients so that memory allocation will be done right.
   */
#if TRANSFORMS_SUPPORTED
  jtransform_request_workspace(&srcinfo, &transformoption);
#endif

  /* Read source file as DCT coefficients */
  src_coef_arrays = jpeg_read_coefficients(&srcinfo);

  /* Initialize destination compression parameters from source values */
  jpeg_copy_critical_parameters(&srcinfo, &dstinfo);

  /* Adjust destination parameters if required by transform options;
   * also find out which set of coefficient arrays will hold the output.
   */
#if TRANSFORMS_SUPPORTED
  dst_coef_arrays = jtransform_adjust_parameters(&srcinfo, &dstinfo,
						 src_coef_arrays,
						 &transformoption);
#else
  dst_coef_arrays = src_coef_arrays;
#endif

  /* Adjust default compression parameters by re-parsing the options */
  file_index = parse_switches(&dstinfo, argc, argv, 0, TRUE);

  /* Specify data destination for compression */
  jpeg_stdio_dest(&dstinfo, output_file);

  /* Start compressor (note no image data is actually written here) */
  jpeg_write_coefficients(&dstinfo, dst_coef_arrays);

  /* Copy to the output file any extra markers that we want to preserve */
  jcopy_markers_execute(&srcinfo, &dstinfo, copyoption);

  /* Execute image transformation, if any */
#if TRANSFORMS_SUPPORTED
  jtransform_execute_transformation(&srcinfo, &dstinfo,
				    src_coef_arrays,
				    &transformoption);
#endif

  /* Finish compression and release memory */
  jpeg_finish_compress(&dstinfo);
  jpeg_destroy_compress(&dstinfo);
  (void) jpeg_finish_decompress(&srcinfo);
  jpeg_destroy_decompress(&srcinfo);

  /* Close files, if we opened them */
  if (input_file != stdin)
    fclose(input_file);
  if (output_file != stdout)
    fclose(output_file);

#ifdef PROGRESS_REPORT
  end_progress_monitor((j_common_ptr) &dstinfo);
#endif

  /* All done. */
  exit(jsrcerr.num_warnings + jdsterr.num_warnings ?EXIT_WARNING:EXIT_SUCCESS);
  return 0;			/* suppress no-return-value warnings */
}

--- NEW FILE: jfdctint.c ---
/*
 * jfdctint.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a slow-but-accurate integer implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_ISLOW_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
 * larger than the true DCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D DCT,
 * because the y0 and y4 outputs need not be divided by sqrt(N).
 * In the IJG code, this factor of 8 is removed by the quantization step
 * (in jcdctmgr.c), NOT in this module.
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
 * array is INT32 anyway.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/*
 * Perform the forward DCT on one block of samples.
 */

GLOBAL(void)
jpeg_fdct_islow (DCTELEM * data)
{
  INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  INT32 tmp10, tmp11, tmp12, tmp13;
  INT32 z1, z2, z3, z4, z5;
  DCTELEM *dataptr;
  int ctr;
  SHIFT_TEMPS

  /* Pass 1: process rows. */
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[0] + dataptr[7];
    tmp7 = dataptr[0] - dataptr[7];
    tmp1 = dataptr[1] + dataptr[6];
    tmp6 = dataptr[1] - dataptr[6];
    tmp2 = dataptr[2] + dataptr[5];
    tmp5 = dataptr[2] - dataptr[5];
    tmp3 = dataptr[3] + dataptr[4];
    tmp4 = dataptr[3] - dataptr[4];
    
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
				   CONST_BITS-PASS1_BITS);
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
				   CONST_BITS-PASS1_BITS);
    
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */
    
    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
    
    dataptr += DCTSIZE;		/* advance pointer to next row */
  }

  /* Pass 2: process columns.
   * We remove the PASS1_BITS scaling, but leave the results scaled up
   * by an overall factor of 8.
   */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
     */
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
					   CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
					   CONST_BITS+PASS1_BITS);
    
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
     * cK represents cos(K*pi/16).
     * i0..i3 in the paper are tmp4..tmp7 here.
     */
    
    z1 = tmp4 + tmp7;
    z2 = tmp5 + tmp6;
    z3 = tmp4 + tmp6;
    z4 = tmp5 + tmp7;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
					   CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
					   CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
					   CONST_BITS+PASS1_BITS);
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
					   CONST_BITS+PASS1_BITS);
    
    dataptr++;			/* advance pointer to next column */
  }
}

#endif /* DCT_ISLOW_SUPPORTED */

--- NEW FILE: testimg.ppm ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: jpegint.h ---
/*
 * jpegint.h
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file provides common declarations for the various JPEG modules.
 * These declarations are considered internal to the JPEG library; most
 * applications using the library shouldn't need to include this file.
 */


/* Declarations for both compression & decompression */

typedef enum {			/* Operating modes for buffer controllers */
	JBUF_PASS_THRU,		/* Plain stripwise operation */
	/* Remaining modes require a full-image buffer to have been created */
	JBUF_SAVE_SOURCE,	/* Run source subobject only, save output */
	JBUF_CRANK_DEST,	/* Run dest subobject only, using saved data */
	JBUF_SAVE_AND_PASS	/* Run both subobjects, save output */
} J_BUF_MODE;

/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
#define CSTATE_START	100	/* after create_compress */
#define CSTATE_SCANNING	101	/* start_compress done, write_scanlines OK */
#define CSTATE_RAW_OK	102	/* start_compress done, write_raw_data OK */
#define CSTATE_WRCOEFS	103	/* jpeg_write_coefficients done */
#define DSTATE_START	200	/* after create_decompress */
#define DSTATE_INHEADER	201	/* reading header markers, no SOS yet */
#define DSTATE_READY	202	/* found SOS, ready for start_decompress */
#define DSTATE_PRELOAD	203	/* reading multiscan file in start_decompress*/
#define DSTATE_PRESCAN	204	/* performing dummy pass for 2-pass quant */
#define DSTATE_SCANNING	205	/* start_decompress done, read_scanlines OK */
#define DSTATE_RAW_OK	206	/* start_decompress done, read_raw_data OK */
#define DSTATE_BUFIMAGE	207	/* expecting jpeg_start_output */
#define DSTATE_BUFPOST	208	/* looking for SOS/EOI in jpeg_finish_output */
#define DSTATE_RDCOEFS	209	/* reading file in jpeg_read_coefficients */
#define DSTATE_STOPPING	210	/* looking for EOI in jpeg_finish_decompress */


/* Declarations for compression modules */

/* Master control module */
struct jpeg_comp_master {
  JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
  JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));

  /* State variables made visible to other modules */
  boolean call_pass_startup;	/* True if pass_startup must be called */
  boolean is_last_pass;		/* True during last pass */
};

/* Main buffer control (downsampled-data buffer) */
struct jpeg_c_main_controller {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
  JMETHOD(void, process_data, (j_compress_ptr cinfo,
			       JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
			       JDIMENSION in_rows_avail));
};

/* Compression preprocessing (downsampling input buffer control) */
struct jpeg_c_prep_controller {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
  JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
				   JSAMPARRAY input_buf,
				   JDIMENSION *in_row_ctr,
				   JDIMENSION in_rows_avail,
				   JSAMPIMAGE output_buf,
				   JDIMENSION *out_row_group_ctr,
				   JDIMENSION out_row_groups_avail));
};

/* Coefficient buffer control */
struct jpeg_c_coef_controller {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
  JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
				   JSAMPIMAGE input_buf));
};

/* Colorspace conversion */
struct jpeg_color_converter {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
  JMETHOD(void, color_convert, (j_compress_ptr cinfo,
				JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
				JDIMENSION output_row, int num_rows));
};

/* Downsampling */
struct jpeg_downsampler {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
  JMETHOD(void, downsample, (j_compress_ptr cinfo,
			     JSAMPIMAGE input_buf, JDIMENSION in_row_index,
			     JSAMPIMAGE output_buf,
			     JDIMENSION out_row_group_index));

  boolean need_context_rows;	/* TRUE if need rows above & below */
};

/* Forward DCT (also controls coefficient quantization) */
struct jpeg_forward_dct {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo));
  /* perhaps this should be an array??? */
  JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
			      jpeg_component_info * compptr,
			      JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
			      JDIMENSION start_row, JDIMENSION start_col,
			      JDIMENSION num_blocks));
};

/* Entropy encoding */
struct jpeg_entropy_encoder {
  JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
  JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
  JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
};

/* Marker writing */
struct jpeg_marker_writer {
  JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
  JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
  JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
  JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
  JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
  /* These routines are exported to allow insertion of extra markers */
  /* Probably only COM and APPn markers should be written this way */
  JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
				      unsigned int datalen));
  JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
};


/* Declarations for decompression modules */

/* Master control module */
struct jpeg_decomp_master {
  JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
  JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));

  /* State variables made visible to other modules */
  boolean is_dummy_pass;	/* True during 1st pass for 2-pass quant */
};

/* Input control module */
struct jpeg_input_controller {
  JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
  JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
  JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));

  /* State variables made visible to other modules */
  boolean has_multiple_scans;	/* True if file has multiple scans */
  boolean eoi_reached;		/* True when EOI has been consumed */
};

/* Main buffer control (downsampled-data buffer) */
struct jpeg_d_main_controller {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
  JMETHOD(void, process_data, (j_decompress_ptr cinfo,
			       JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
			       JDIMENSION out_rows_avail));
};

/* Coefficient buffer control */
struct jpeg_d_coef_controller {
  JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
  JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
  JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
  JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
				 JSAMPIMAGE output_buf));
  /* Pointer to array of coefficient virtual arrays, or NULL if none */
  jvirt_barray_ptr *coef_arrays;
};

/* Decompression postprocessing (color quantization buffer control) */
struct jpeg_d_post_controller {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
  JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
				    JSAMPIMAGE input_buf,
				    JDIMENSION *in_row_group_ctr,
				    JDIMENSION in_row_groups_avail,
				    JSAMPARRAY output_buf,
				    JDIMENSION *out_row_ctr,
				    JDIMENSION out_rows_avail));
};

/* Marker reading & parsing */
struct jpeg_marker_reader {
  JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
  /* Read markers until SOS or EOI.
   * Returns same codes as are defined for jpeg_consume_input:
   * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
   */
  JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
  /* Read a restart marker --- exported for use by entropy decoder only */
  jpeg_marker_parser_method read_restart_marker;

  /* State of marker reader --- nominally internal, but applications
   * supplying COM or APPn handlers might like to know the state.
   */
  boolean saw_SOI;		/* found SOI? */
  boolean saw_SOF;		/* found SOF? */
  int next_restart_num;		/* next restart number expected (0-7) */
  unsigned int discarded_bytes;	/* # of bytes skipped looking for a marker */
};

/* Entropy decoding */
struct jpeg_entropy_decoder {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
  JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
				JBLOCKROW *MCU_data));

  /* This is here to share code between baseline and progressive decoders; */
  /* other modules probably should not use it */
  boolean insufficient_data;	/* set TRUE after emitting warning */
};

/* Inverse DCT (also performs dequantization) */
typedef JMETHOD(void, inverse_DCT_method_ptr,
		(j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col));

struct jpeg_inverse_dct {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
  /* It is useful to allow each component to have a separate IDCT method. */
  inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
};

/* Upsampling (note that upsampler must also call color converter) */
struct jpeg_upsampler {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
  JMETHOD(void, upsample, (j_decompress_ptr cinfo,
			   JSAMPIMAGE input_buf,
			   JDIMENSION *in_row_group_ctr,
			   JDIMENSION in_row_groups_avail,
			   JSAMPARRAY output_buf,
			   JDIMENSION *out_row_ctr,
			   JDIMENSION out_rows_avail));

  boolean need_context_rows;	/* TRUE if need rows above & below */
};

/* Colorspace conversion */
struct jpeg_color_deconverter {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
  JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
				JSAMPIMAGE input_buf, JDIMENSION input_row,
				JSAMPARRAY output_buf, int num_rows));
};

/* Color quantization or color precision reduction */
struct jpeg_color_quantizer {
  JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
  JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
				 JSAMPARRAY input_buf, JSAMPARRAY output_buf,
				 int num_rows));
  JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
  JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
};


/* Miscellaneous useful macros */

#undef MAX
#define MAX(a,b)	((a) > (b) ? (a) : (b))
#undef MIN
#define MIN(a,b)	((a) < (b) ? (a) : (b))


/* We assume that right shift corresponds to signed division by 2 with
 * rounding towards minus infinity.  This is correct for typical "arithmetic
 * shift" instructions that shift in copies of the sign bit.  But some
 * C compilers implement >> with an unsigned shift.  For these machines you
 * must define RIGHT_SHIFT_IS_UNSIGNED.
 * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
 * It is only applied with constant shift counts.  SHIFT_TEMPS must be
 * included in the variables of any routine using RIGHT_SHIFT.
 */

#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define SHIFT_TEMPS	INT32 shift_temp;
#define RIGHT_SHIFT(x,shft)  \
	((shift_temp = (x)) < 0 ? \
	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
	 (shift_temp >> (shft)))
#else
#define SHIFT_TEMPS
#define RIGHT_SHIFT(x,shft)	((x) >> (shft))
#endif


/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jinit_compress_master	jICompress
#define jinit_c_master_control	jICMaster
#define jinit_c_main_controller	jICMainC
#define jinit_c_prep_controller	jICPrepC
#define jinit_c_coef_controller	jICCoefC
#define jinit_color_converter	jICColor
#define jinit_downsampler	jIDownsampler
#define jinit_forward_dct	jIFDCT
#define jinit_huff_encoder	jIHEncoder
#define jinit_phuff_encoder	jIPHEncoder
#define jinit_marker_writer	jIMWriter
#define jinit_master_decompress	jIDMaster
#define jinit_d_main_controller	jIDMainC
#define jinit_d_coef_controller	jIDCoefC
#define jinit_d_post_controller	jIDPostC
#define jinit_input_controller	jIInCtlr
#define jinit_marker_reader	jIMReader
#define jinit_huff_decoder	jIHDecoder
#define jinit_phuff_decoder	jIPHDecoder
#define jinit_inverse_dct	jIIDCT
#define jinit_upsampler		jIUpsampler
#define jinit_color_deconverter	jIDColor
#define jinit_1pass_quantizer	jI1Quant
#define jinit_2pass_quantizer	jI2Quant
#define jinit_merged_upsampler	jIMUpsampler
#define jinit_memory_mgr	jIMemMgr
#define jdiv_round_up		jDivRound
#define jround_up		jRound
#define jcopy_sample_rows	jCopySamples
#define jcopy_block_row		jCopyBlocks
#define jzero_far		jZeroFar
#define jpeg_zigzag_order	jZIGTable
#define jpeg_natural_order	jZAGTable
#endif /* NEED_SHORT_EXTERNAL_NAMES */


/* Compression module initialization routines */
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
					 boolean transcode_only));
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
/* Decompression module initialization routines */
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
					  boolean need_full_buffer));
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
/* Memory manager initialization */
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));

/* Utility routines in jutils.c */
EXTERN(long) jdiv_round_up JPP((long a, long b));
EXTERN(long) jround_up JPP((long a, long b));
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
				    JSAMPARRAY output_array, int dest_row,
				    int num_rows, JDIMENSION num_cols));
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
				  JDIMENSION num_blocks));
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
/* Constant tables in jutils.c */
#if 0				/* This table is not actually needed in v6a */
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
#endif
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */

/* Suppress undefined-structure complaints if necessary. */

#ifdef INCOMPLETE_TYPES_BROKEN
#ifndef AM_MEMORY_MANAGER	/* only jmemmgr.c defines these */
struct jvirt_sarray_control { long dummy; };
struct jvirt_barray_control { long dummy; };
#endif
#endif /* INCOMPLETE_TYPES_BROKEN */

--- NEW FILE: ckconfig.c ---
/*
 * ckconfig.c
 *
 * Copyright (C) 1991-1994, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 */

/*
 * This program is intended to help you determine how to configure the JPEG
 * software for installation on a particular system.  The idea is to try to
 * compile and execute this program.  If your compiler fails to compile the
 * program, make changes as indicated in the comments below.  Once you can
 * compile the program, run it, and it will produce a "jconfig.h" file for
 * your system.
 *
 * As a general rule, each time you try to compile this program,
 * pay attention only to the *first* error message you get from the compiler.
 * Many C compilers will issue lots of spurious error messages once they
 * have gotten confused.  Go to the line indicated in the first error message,
 * and read the comments preceding that line to see what to change.
 *
 * Almost all of the edits you may need to make to this program consist of
 * changing a line that reads "#define SOME_SYMBOL" to "#undef SOME_SYMBOL",
 * or vice versa.  This is called defining or undefining that symbol.
 */


/* First we must see if your system has the include files we need.
 * We start out with the assumption that your system has all the ANSI-standard
 * include files.  If you get any error trying to include one of these files,
 * undefine the corresponding HAVE_xxx symbol.
 */

#define HAVE_STDDEF_H		/* replace 'define' by 'undef' if error here */
#ifdef HAVE_STDDEF_H		/* next line will be skipped if you undef... */
#include <stddef.h>
#endif

#define HAVE_STDLIB_H		/* same thing for stdlib.h */
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#include <stdio.h>		/* If you ain't got this, you ain't got C. */

/* We have to see if your string functions are defined by
 * strings.h (old BSD convention) or string.h (everybody else).
 * We try the non-BSD convention first; define NEED_BSD_STRINGS
 * if the compiler says it can't find string.h.
 */

#undef NEED_BSD_STRINGS

#ifdef NEED_BSD_STRINGS
#include <strings.h>
#else
#include <string.h>
#endif

/* On some systems (especially older Unix machines), type size_t is
 * defined only in the include file <sys/types.h>.  If you get a failure
 * on the size_t test below, try defining NEED_SYS_TYPES_H.
 */

#undef NEED_SYS_TYPES_H		/* start by assuming we don't need it */
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif


/* Usually type size_t is defined in one of the include files we've included
 * above.  If not, you'll get an error on the "typedef size_t my_size_t;" line.
 * In that case, first try defining NEED_SYS_TYPES_H just above.
 * If that doesn't work, you'll have to search through your system library
 * to figure out which include file defines "size_t".  Look for a line that
 * says "typedef something-or-other size_t;".  Then, change the line below
 * that says "#include <someincludefile.h>" to instead include the file
 * you found size_t in, and define NEED_SPECIAL_INCLUDE.  If you can't find
 * type size_t anywhere, try replacing "#include <someincludefile.h>" with
 * "typedef unsigned int size_t;".
 */

#undef NEED_SPECIAL_INCLUDE	/* assume we DON'T need it, for starters */

#ifdef NEED_SPECIAL_INCLUDE
#include <someincludefile.h>
#endif

typedef size_t my_size_t;	/* The payoff: do we have size_t now? */


/* The next question is whether your compiler supports ANSI-style function
 * prototypes.  You need to know this in order to choose between using
 * makefile.ansi and using makefile.unix.
 * The #define line below is set to assume you have ANSI function prototypes.
 * If you get an error in this group of lines, undefine HAVE_PROTOTYPES.
 */

#define HAVE_PROTOTYPES

#ifdef HAVE_PROTOTYPES
int testfunction (int arg1, int * arg2); /* check prototypes */

struct methods_struct {		/* check method-pointer declarations */
  int (*error_exit) (char *msgtext);
  int (*trace_message) (char *msgtext);
  int (*another_method) (void);
};

int testfunction (int arg1, int * arg2) /* check definitions */
{
  return arg2[arg1];
}

int test2function (void)	/* check void arg list */
{
  return 0;
}
#endif


/* Now we want to find out if your compiler knows what "unsigned char" means.
 * If you get an error on the "unsigned char un_char;" line,
 * then undefine HAVE_UNSIGNED_CHAR.
 */

#define HAVE_UNSIGNED_CHAR

#ifdef HAVE_UNSIGNED_CHAR
unsigned char un_char;
#endif


/* Now we want to find out if your compiler knows what "unsigned short" means.
 * If you get an error on the "unsigned short un_short;" line,
 * then undefine HAVE_UNSIGNED_SHORT.
 */

#define HAVE_UNSIGNED_SHORT

#ifdef HAVE_UNSIGNED_SHORT
unsigned short un_short;
#endif


/* Now we want to find out if your compiler understands type "void".
 * If you get an error anywhere in here, undefine HAVE_VOID.
 */

#define HAVE_VOID

#ifdef HAVE_VOID
/* Caution: a C++ compiler will insist on complete prototypes */
typedef void * void_ptr;	/* check void * */
#ifdef HAVE_PROTOTYPES		/* check ptr to function returning void */
typedef void (*void_func) (int a, int b);
#else
typedef void (*void_func) ();
#endif

#ifdef HAVE_PROTOTYPES		/* check void function result */
void test3function (void_ptr arg1, void_func arg2)
#else
void test3function (arg1, arg2)
     void_ptr arg1;
     void_func arg2;
#endif
{
  char * locptr = (char *) arg1; /* check casting to and from void * */
  arg1 = (void *) locptr;
  (*arg2) (1, 2);		/* check call of fcn returning void */
}
#endif


/* Now we want to find out if your compiler knows what "const" means.
 * If you get an error here, undefine HAVE_CONST.
 */

#define HAVE_CONST

#ifdef HAVE_CONST
static const int carray[3] = {1, 2, 3};

#ifdef HAVE_PROTOTYPES
int test4function (const int arg1)
#else
int test4function (arg1)
     const int arg1;
#endif
{
  return carray[arg1];
}
#endif


/* If you get an error or warning about this structure definition,
 * define INCOMPLETE_TYPES_BROKEN.
 */

#undef INCOMPLETE_TYPES_BROKEN

#ifndef INCOMPLETE_TYPES_BROKEN
typedef struct undefined_structure * undef_struct_ptr;
#endif


/* If you get an error about duplicate names,
 * define NEED_SHORT_EXTERNAL_NAMES.
 */

#undef NEED_SHORT_EXTERNAL_NAMES

#ifndef NEED_SHORT_EXTERNAL_NAMES

int possibly_duplicate_function ()
{
  return 0;
}

int possibly_dupli_function ()
{
  return 1;
}

#endif



/************************************************************************
 *  OK, that's it.  You should not have to change anything beyond this
 *  point in order to compile and execute this program.  (You might get
 *  some warnings, but you can ignore them.)
 *  When you run the program, it will make a couple more tests that it
 *  can do automatically, and then it will create jconfig.h and print out
 *  any additional suggestions it has.
 ************************************************************************
 */


#ifdef HAVE_PROTOTYPES
int is_char_signed (int arg)
#else
int is_char_signed (arg)
     int arg;
#endif
{
  if (arg == 189) {		/* expected result for unsigned char */
    return 0;			/* type char is unsigned */
  }
  else if (arg != -67) {	/* expected result for signed char */
    printf("Hmm, it seems 'char' is not eight bits wide on your machine.\n");
    printf("I fear the JPEG software will not work at all.\n\n");
  }
  return 1;			/* assume char is signed otherwise */
}


#ifdef HAVE_PROTOTYPES
int is_shifting_signed (long arg)
#else
int is_shifting_signed (arg)
     long arg;
#endif
/* See whether right-shift on a long is signed or not. */
{
  long res = arg >> 4;

  if (res == -0x7F7E80CL) {	/* expected result for signed shift */
    return 1;			/* right shift is signed */
  }
  /* see if unsigned-shift hack will fix it. */
  /* we can't just test exact value since it depends on width of long... */
  res |= (~0L) << (32-4);
  if (res == -0x7F7E80CL) {	/* expected result now? */
    return 0;			/* right shift is unsigned */
  }
  printf("Right shift isn't acting as I expect it to.\n");
  printf("I fear the JPEG software will not work at all.\n\n");
  return 0;			/* try it with unsigned anyway */
}


#ifdef HAVE_PROTOTYPES
int main (int argc, char ** argv)
#else
int main (argc, argv)
     int argc;
     char ** argv;
#endif
{
  char signed_char_check = (char) (-67);
  FILE *outfile;

  /* Attempt to write jconfig.h */
  if ((outfile = fopen("jconfig.h", "w")) == NULL) {
    printf("Failed to write jconfig.h\n");
    return 1;
  }

  /* Write out all the info */
  fprintf(outfile, "/* jconfig.h --- generated by ckconfig.c */\n");
  fprintf(outfile, "/* see jconfig.doc for explanations */\n\n");
#ifdef HAVE_PROTOTYPES
  fprintf(outfile, "#define HAVE_PROTOTYPES\n");
#else
  fprintf(outfile, "#undef HAVE_PROTOTYPES\n");
#endif
#ifdef HAVE_UNSIGNED_CHAR
  fprintf(outfile, "#define HAVE_UNSIGNED_CHAR\n");
#else
  fprintf(outfile, "#undef HAVE_UNSIGNED_CHAR\n");
#endif
#ifdef HAVE_UNSIGNED_SHORT
  fprintf(outfile, "#define HAVE_UNSIGNED_SHORT\n");
#else
  fprintf(outfile, "#undef HAVE_UNSIGNED_SHORT\n");
#endif
#ifdef HAVE_VOID
  fprintf(outfile, "/* #define void char */\n");
#else
  fprintf(outfile, "#define void char\n");
#endif
#ifdef HAVE_CONST
  fprintf(outfile, "/* #define const */\n");
#else
  fprintf(outfile, "#define const\n");
#endif
  if (is_char_signed((int) signed_char_check))
    fprintf(outfile, "#undef CHAR_IS_UNSIGNED\n");
  else
    fprintf(outfile, "#define CHAR_IS_UNSIGNED\n");
#ifdef HAVE_STDDEF_H
  fprintf(outfile, "#define HAVE_STDDEF_H\n");
#else
  fprintf(outfile, "#undef HAVE_STDDEF_H\n");
#endif
#ifdef HAVE_STDLIB_H
  fprintf(outfile, "#define HAVE_STDLIB_H\n");
#else
  fprintf(outfile, "#undef HAVE_STDLIB_H\n");
#endif
#ifdef NEED_BSD_STRINGS
  fprintf(outfile, "#define NEED_BSD_STRINGS\n");
#else
  fprintf(outfile, "#undef NEED_BSD_STRINGS\n");
#endif
#ifdef NEED_SYS_TYPES_H
  fprintf(outfile, "#define NEED_SYS_TYPES_H\n");
#else
  fprintf(outfile, "#undef NEED_SYS_TYPES_H\n");
#endif
  fprintf(outfile, "#undef NEED_FAR_POINTERS\n");
#ifdef NEED_SHORT_EXTERNAL_NAMES
  fprintf(outfile, "#define NEED_SHORT_EXTERNAL_NAMES\n");
#else
  fprintf(outfile, "#undef NEED_SHORT_EXTERNAL_NAMES\n");
#endif
#ifdef INCOMPLETE_TYPES_BROKEN
  fprintf(outfile, "#define INCOMPLETE_TYPES_BROKEN\n");
#else
  fprintf(outfile, "#undef INCOMPLETE_TYPES_BROKEN\n");
#endif
  fprintf(outfile, "\n#ifdef JPEG_INTERNALS\n\n");
  if (is_shifting_signed(-0x7F7E80B1L))
    fprintf(outfile, "#undef RIGHT_SHIFT_IS_UNSIGNED\n");
  else
    fprintf(outfile, "#define RIGHT_SHIFT_IS_UNSIGNED\n");
  fprintf(outfile, "\n#endif /* JPEG_INTERNALS */\n");
  fprintf(outfile, "\n#ifdef JPEG_CJPEG_DJPEG\n\n");
  fprintf(outfile, "#define BMP_SUPPORTED		/* BMP image file format */\n");
  fprintf(outfile, "#define GIF_SUPPORTED		/* GIF image file format */\n");
  fprintf(outfile, "#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */\n");
  fprintf(outfile, "#undef RLE_SUPPORTED		/* Utah RLE image file format */\n");
  fprintf(outfile, "#define TARGA_SUPPORTED		/* Targa image file format */\n\n");
  fprintf(outfile, "#undef TWO_FILE_COMMANDLINE	/* You may need this on non-Unix systems */\n");
  fprintf(outfile, "#undef NEED_SIGNAL_CATCHER	/* Define this if you use jmemname.c */\n");
  fprintf(outfile, "#undef DONT_USE_B_MODE\n");
  fprintf(outfile, "/* #define PROGRESS_REPORT */	/* optional */\n");
  fprintf(outfile, "\n#endif /* JPEG_CJPEG_DJPEG */\n");

  /* Close the jconfig.h file */
  fclose(outfile);

  /* User report */
  printf("Configuration check for Independent JPEG Group's software done.\n");
  printf("\nI have written the jconfig.h file for you.\n\n");
#ifdef HAVE_PROTOTYPES
  printf("You should use makefile.ansi as the starting point for your Makefile.\n");
#else
  printf("You should use makefile.unix as the starting point for your Makefile.\n");
#endif

#ifdef NEED_SPECIAL_INCLUDE
  printf("\nYou'll need to change jconfig.h to include the system include file\n");
  printf("that you found type size_t in, or add a direct definition of type\n");
  printf("size_t if that's what you used.  Just add it to the end.\n");
#endif

  return 0;
}

--- NEW FILE: jcomapi.c ---
/*
 * jcomapi.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains application interface routines that are used for both
 * compression and decompression.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * Abort processing of a JPEG compression or decompression operation,
 * but don't destroy the object itself.
 *
 * For this, we merely clean up all the nonpermanent memory pools.
 * Note that temp files (virtual arrays) are not allowed to belong to
 * the permanent pool, so we will be able to close all temp files here.
 * Closing a data source or destination, if necessary, is the application's
 * responsibility.
 */

GLOBAL(void)
jpeg_abort (j_common_ptr cinfo)
{
  int pool;

  /* Do nothing if called on a not-initialized or destroyed JPEG object. */
  if (cinfo->mem == NULL)
    return;

  /* Releasing pools in reverse order might help avoid fragmentation
   * with some (brain-damaged) malloc libraries.
   */
  for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
    (*cinfo->mem->free_pool) (cinfo, pool);
  }

  /* Reset overall state for possible reuse of object */
  if (cinfo->is_decompressor) {
    cinfo->global_state = DSTATE_START;
    /* Try to keep application from accessing now-deleted marker list.
     * A bit kludgy to do it here, but this is the most central place.
     */
    ((j_decompress_ptr) cinfo)->marker_list = NULL;
  } else {
    cinfo->global_state = CSTATE_START;
  }
}


/*
 * Destruction of a JPEG object.
 *
 * Everything gets deallocated except the master jpeg_compress_struct itself
 * and the error manager struct.  Both of these are supplied by the application
 * and must be freed, if necessary, by the application.  (Often they are on
 * the stack and so don't need to be freed anyway.)
 * Closing a data source or destination, if necessary, is the application's
 * responsibility.
 */

GLOBAL(void)
jpeg_destroy (j_common_ptr cinfo)
{
  /* We need only tell the memory manager to release everything. */
  /* NB: mem pointer is NULL if memory mgr failed to initialize. */
  if (cinfo->mem != NULL)
    (*cinfo->mem->self_destruct) (cinfo);
  cinfo->mem = NULL;		/* be safe if jpeg_destroy is called twice */
  cinfo->global_state = 0;	/* mark it destroyed */
}


/*
 * Convenience routines for allocating quantization and Huffman tables.
 * (Would jutils.c be a more reasonable place to put these?)
 */

GLOBAL(JQUANT_TBL *)
jpeg_alloc_quant_table (j_common_ptr cinfo)
{
  JQUANT_TBL *tbl;

  tbl = (JQUANT_TBL *)
    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
  return tbl;
}


GLOBAL(JHUFF_TBL *)
jpeg_alloc_huff_table (j_common_ptr cinfo)
{
  JHUFF_TBL *tbl;

  tbl = (JHUFF_TBL *)
    (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
  tbl->sent_table = FALSE;	/* make sure this is false in any new table */
  return tbl;
}

--- NEW FILE: djpeg.1 ---
.TH DJPEG 1 "22 August 1997"
.SH NAME
djpeg \- decompress a JPEG file to an image file
.SH SYNOPSIS
.B djpeg
[
.I options
]
[
.I filename
]
.LP
.SH DESCRIPTION
.LP
.B djpeg
decompresses the named JPEG file, or the standard input if no file is named,
and produces an image file on the standard output.  PBMPLUS (PPM/PGM), BMP,
GIF, Targa, or RLE (Utah Raster Toolkit) output format can be selected.
(RLE is supported only if the URT library is available.)
.SH OPTIONS
All switch names may be abbreviated; for example,
.B \-grayscale
may be written
.B \-gray
or
.BR \-gr .
Most of the "basic" switches can be abbreviated to as little as one letter.
Upper and lower case are equivalent (thus
.B \-BMP
is the same as
.BR \-bmp ).
British spellings are also accepted (e.g.,
.BR \-greyscale ),
though for brevity these are not mentioned below.
.PP
The basic switches are:
.TP
.BI \-colors " N"
Reduce image to at most N colors.  This reduces the number of colors used in
the output image, so that it can be displayed on a colormapped display or
stored in a colormapped file format.  For example, if you have an 8-bit
display, you'd need to reduce to 256 or fewer colors.
.TP
.BI \-quantize " N"
Same as
.BR \-colors .
.B \-colors
is the recommended name,
.B \-quantize
is provided only for backwards compatibility.
.TP
.B \-fast
Select recommended processing options for fast, low quality output.  (The
default options are chosen for highest quality output.)  Currently, this is
equivalent to \fB\-dct fast \-nosmooth \-onepass \-dither ordered\fR.
.TP
.B \-grayscale
Force gray-scale output even if JPEG file is color.  Useful for viewing on
monochrome displays; also,
.B djpeg
runs noticeably faster in this mode.
.TP
.BI \-scale " M/N"
Scale the output image by a factor M/N.  Currently the scale factor must be
1/1, 1/2, 1/4, or 1/8.  Scaling is handy if the image is larger than your
screen; also,
.B djpeg
runs much faster when scaling down the output.
.TP
.B \-bmp
Select BMP output format (Windows flavor).  8-bit colormapped format is
emitted if
.B \-colors
or
.B \-grayscale
is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
format is emitted.
.TP
.B \-gif
Select GIF output format.  Since GIF does not support more than 256 colors,
.B \-colors 256
is assumed (unless you specify a smaller number of colors).
.TP
.B \-os2
Select BMP output format (OS/2 1.x flavor).  8-bit colormapped format is
emitted if
.B \-colors
or
.B \-grayscale
is specified, or if the JPEG file is gray-scale; otherwise, 24-bit full-color
format is emitted.
.TP
.B \-pnm
Select PBMPLUS (PPM/PGM) output format (this is the default format).
PGM is emitted if the JPEG file is gray-scale or if
.B \-grayscale
is specified; otherwise PPM is emitted.
.TP
.B \-rle
Select RLE output format.  (Requires URT library.)
.TP
.B \-targa
Select Targa output format.  Gray-scale format is emitted if the JPEG file is
gray-scale or if
.B \-grayscale
is specified; otherwise, colormapped format is emitted if
.B \-colors
is specified; otherwise, 24-bit full-color format is emitted.
.PP
Switches for advanced users:
.TP
.B \-dct int
Use integer DCT method (default).
.TP
.B \-dct fast
Use fast integer DCT (less accurate).
.TP
.B \-dct float
Use floating-point DCT method.
The float method is very slightly more accurate than the int method, but is
much slower unless your machine has very fast floating-point hardware.  Also
note that results of the floating-point method may vary slightly across
machines, while the integer methods should give the same results everywhere.
The fast integer method is much less accurate than the other two.
.TP
.B \-dither fs
Use Floyd-Steinberg dithering in color quantization.
.TP
.B \-dither ordered
Use ordered dithering in color quantization.
.TP
.B \-dither none
Do not use dithering in color quantization.
By default, Floyd-Steinberg dithering is applied when quantizing colors; this
is slow but usually produces the best results.  Ordered dither is a compromise
between speed and quality; no dithering is fast but usually looks awful.  Note
that these switches have no effect unless color quantization is being done.
Ordered dither is only available in
.B \-onepass
mode.
.TP
.BI \-map " file"
Quantize to the colors used in the specified image file.  This is useful for
producing multiple files with identical color maps, or for forcing a
predefined set of colors to be used.  The
.I file
must be a GIF or PPM file. This option overrides
.B \-colors
and
.BR \-onepass .
.TP
.B \-nosmooth
Use a faster, lower-quality upsampling routine.
.TP
.B \-onepass
Use one-pass instead of two-pass color quantization.  The one-pass method is
faster and needs less memory, but it produces a lower-quality image.
.B \-onepass
is ignored unless you also say
.B \-colors
.IR N .
Also, the one-pass method is always used for gray-scale output (the two-pass
method is no improvement then).
.TP
.BI \-maxmemory " N"
Set limit for amount of memory to use in processing large images.  Value is
in thousands of bytes, or millions of bytes if "M" is attached to the
number.  For example,
.B \-max 4m
selects 4000000 bytes.  If more space is needed, temporary files will be used.
.TP
.BI \-outfile " name"
Send output image to the named file, not to standard output.
.TP
.B \-verbose
Enable debug printout.  More
.BR \-v 's
give more output.  Also, version information is printed at startup.
.TP
.B \-debug
Same as
.BR \-verbose .
.SH EXAMPLES
.LP
This example decompresses the JPEG file foo.jpg, quantizes it to
256 colors, and saves the output in 8-bit BMP format in foo.bmp:
.IP
.B djpeg \-colors 256 \-bmp
.I foo.jpg
.B >
.I foo.bmp
.SH HINTS
To get a quick preview of an image, use the
.B \-grayscale
and/or
.B \-scale
switches.
.B \-grayscale \-scale 1/8
is the fastest case.
.PP
Several options are available that trade off image quality to gain speed.
.B \-fast
turns on the recommended settings.
.PP
.B \-dct fast
and/or
.B \-nosmooth
gain speed at a small sacrifice in quality.
When producing a color-quantized image,
.B \-onepass \-dither ordered
is fast but much lower quality than the default behavior.
.B \-dither none
may give acceptable results in two-pass mode, but is seldom tolerable in
one-pass mode.
.PP
If you are fortunate enough to have very fast floating point hardware,
\fB\-dct float\fR may be even faster than \fB\-dct fast\fR.  But on most
machines \fB\-dct float\fR is slower than \fB\-dct int\fR; in this case it is
not worth using, because its theoretical accuracy advantage is too small to be
significant in practice.
.SH ENVIRONMENT
.TP
.B JPEGMEM
If this environment variable is set, its value is the default memory limit.
The value is specified as described for the
.B \-maxmemory
switch.
.B JPEGMEM
overrides the default value specified when the program was compiled, and
itself is overridden by an explicit
.BR \-maxmemory .
.SH SEE ALSO
.BR cjpeg (1),
.BR jpegtran (1),
.BR rdjpgcom (1),
.BR wrjpgcom (1)
.br
.BR ppm (5),
.BR pgm (5)
.br
Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
.SH AUTHOR
Independent JPEG Group
.SH BUGS
Arithmetic coding is not supported for legal reasons.
.PP
To avoid the Unisys LZW patent,
.B djpeg
produces uncompressed GIF files.  These are larger than they should be, but
are readable by standard GIF decoders.
.PP
Still not as fast as we'd like.

--- NEW FILE: makcjpeg.st ---
; Project file for Independent JPEG Group's software
;
; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
; Thanks to Frank Moehle (Frank.Moehle at arbi.informatik.uni-oldenburg.de),
; Dr. B. Setzepfandt (bernd at gina.uni-muenster.de),
; and Guido Vollbeding (guivol at esc.de).
;
; To use this file, rename it to cjpeg.prj.
; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
; Read installation instructions before trying to make the program!
;
;
;      * * * Output file * * *
cjpeg.ttp
;
; * * * COMPILER OPTIONS * * *  
.C[-P]        ; absolute calls
.C[-M]        ; and no string merging, folks
.C[-w-cln]    ; no "constant is long" warnings
.C[-w-par]    ; no "parameter xxxx unused"
.C[-w-rch]    ; no "unreachable code"
.C[-wsig]     ; warn if significant digits may be lost
=
; * * * * List of modules * * * * 
pcstart.o
cjpeg.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,jversion.h)
cdjpeg.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdswitch.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdppm.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdgif.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdtarga.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdbmp.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdrle.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
libjpeg.lib        ; built by libjpeg.prj
pcfltlib.lib       ; floating point library
; the float library can be omitted if you've turned off DCT_FLOAT_SUPPORTED
pcstdlib.lib       ; standard library
pcextlib.lib       ; extended library

--- NEW FILE: jchuff.c ---
/*
 * jchuff.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains Huffman entropy encoding routines.
 *
 * Much of the complexity here has to do with supporting output suspension.
 * If the data destination module demands suspension, we want to be able to
 * back up to the start of the current MCU.  To do this, we copy state
 * variables into local working storage, and update them back to the
 * permanent JPEG objects only upon successful completion of an MCU.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jchuff.h"		/* Declarations shared with jcphuff.c */


/* Expanded entropy encoder object for Huffman encoding.
 *
 * The savable_state subrecord contains fields that change within an MCU,
 * but must not be updated permanently until we complete the MCU.
 */

typedef struct {
  INT32 put_buffer;		/* current bit-accumulation buffer */
  int put_bits;			/* # of bits now in it */
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;

/* This macro is to work around compilers with missing or broken
 * structure assignment.  You'll need to fix this code if you have
 * such a compiler and you change MAX_COMPS_IN_SCAN.
 */

#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src)  \
	((dest).put_buffer = (src).put_buffer, \
	 (dest).put_bits = (src).put_bits, \
	 (dest).last_dc_val[0] = (src).last_dc_val[0], \
	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
	 (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif


typedef struct {
  struct jpeg_entropy_encoder pub; /* public fields */

  savable_state saved;		/* Bit buffer & DC state at start of MCU */

  /* These fields are NOT loaded into local working state. */
  unsigned int restarts_to_go;	/* MCUs left in this restart interval */
  int next_restart_num;		/* next restart number to write (0-7) */

  /* Pointers to derived tables (these workspaces have image lifespan) */
  c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];

#ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */
  long * dc_count_ptrs[NUM_HUFF_TBLS];
  long * ac_count_ptrs[NUM_HUFF_TBLS];
#endif
} huff_entropy_encoder;

typedef huff_entropy_encoder * huff_entropy_ptr;

/* Working state while writing an MCU.
 * This struct contains all the fields that are needed by subroutines.
 */

typedef struct {
  JOCTET * next_output_byte;	/* => next byte to write in buffer */
  size_t free_in_buffer;	/* # of byte spaces remaining in buffer */
  savable_state cur;		/* Current bit buffer & DC state */
  j_compress_ptr cinfo;		/* dump_buffer needs access to this */
} working_state;


/* Forward declarations */
METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
					JBLOCKROW *MCU_data));
METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
#ifdef ENTROPY_OPT_SUPPORTED
METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
					  JBLOCKROW *MCU_data));
METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
#endif


/*
 * Initialize for a Huffman-compressed scan.
 * If gather_statistics is TRUE, we do not output anything during the scan,
 * just count the Huffman symbols used and generate Huffman code tables.
 */

METHODDEF(void)
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci, dctbl, actbl;
  jpeg_component_info * compptr;

  if (gather_statistics) {
#ifdef ENTROPY_OPT_SUPPORTED
    entropy->pub.encode_mcu = encode_mcu_gather;
    entropy->pub.finish_pass = finish_pass_gather;
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
  } else {
    entropy->pub.encode_mcu = encode_mcu_huff;
    entropy->pub.finish_pass = finish_pass_huff;
  }

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    dctbl = compptr->dc_tbl_no;
    actbl = compptr->ac_tbl_no;
    if (gather_statistics) {
#ifdef ENTROPY_OPT_SUPPORTED
      /* Check for invalid table indexes */
      /* (make_c_derived_tbl does this in the other path) */
      if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
      if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
	ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
      /* Allocate and zero the statistics tables */
      /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
      if (entropy->dc_count_ptrs[dctbl] == NULL)
	entropy->dc_count_ptrs[dctbl] = (long *)
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      257 * SIZEOF(long));
      MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
      if (entropy->ac_count_ptrs[actbl] == NULL)
	entropy->ac_count_ptrs[actbl] = (long *)
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      257 * SIZEOF(long));
      MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
#endif
    } else {
      /* Compute derived values for Huffman tables */
      /* We may do this more than once for a table, but it's not expensive */
      jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
			      & entropy->dc_derived_tbls[dctbl]);
      jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
			      & entropy->ac_derived_tbls[actbl]);
    }
    /* Initialize DC predictions to 0 */
    entropy->saved.last_dc_val[ci] = 0;
  }

  /* Initialize bit buffer to empty */
  entropy->saved.put_buffer = 0;
  entropy->saved.put_bits = 0;

  /* Initialize restart stuff */
  entropy->restarts_to_go = cinfo->restart_interval;
  entropy->next_restart_num = 0;
}


/*
 * Compute the derived values for a Huffman table.
 * This routine also performs some validation checks on the table.
 *
 * Note this is also used by jcphuff.c.
 */

GLOBAL(void)
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
			 c_derived_tbl ** pdtbl)
{
  JHUFF_TBL *htbl;
  c_derived_tbl *dtbl;
  int p, i, l, lastp, si, maxsymbol;
  char huffsize[257];
  unsigned int huffcode[257];
  unsigned int code;

  /* Note that huffsize[] and huffcode[] are filled in code-length order,
   * paralleling the order of the symbols themselves in htbl->huffval[].
   */

  /* Find the input Huffman table */
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
  htbl =
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
  if (htbl == NULL)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);

  /* Allocate a workspace if we haven't already done so. */
  if (*pdtbl == NULL)
    *pdtbl = (c_derived_tbl *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(c_derived_tbl));
  dtbl = *pdtbl;
  
  /* Figure C.1: make table of Huffman code length for each symbol */

  p = 0;
  for (l = 1; l <= 16; l++) {
    i = (int) htbl->bits[l];
    if (i < 0 || p + i > 256)	/* protect against table overrun */
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    while (i--)
      huffsize[p++] = (char) l;
  }
  huffsize[p] = 0;
  lastp = p;
  
  /* Figure C.2: generate the codes themselves */
  /* We also validate that the counts represent a legal Huffman code tree. */

  code = 0;
  si = huffsize[0];
  p = 0;
  while (huffsize[p]) {
    while (((int) huffsize[p]) == si) {
      huffcode[p++] = code;
      code++;
    }
    /* code is now 1 more than the last code used for codelength si; but
     * it must still fit in si bits, since no code is allowed to be all ones.
     */
    if (((INT32) code) >= (((INT32) 1) << si))
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    code <<= 1;
    si++;
  }
  
  /* Figure C.3: generate encoding tables */
  /* These are code and size indexed by symbol value */

  /* Set all codeless symbols to have code length 0;
   * this lets us detect duplicate VAL entries here, and later
   * allows emit_bits to detect any attempt to emit such symbols.
   */
  MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));

  /* This is also a convenient place to check for out-of-range
   * and duplicated VAL entries.  We allow 0..255 for AC symbols
   * but only 0..15 for DC.  (We could constrain them further
   * based on data depth and mode, but this seems enough.)
   */
  maxsymbol = isDC ? 15 : 255;

  for (p = 0; p < lastp; p++) {
    i = htbl->huffval[p];
    if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    dtbl->ehufco[i] = huffcode[p];
    dtbl->ehufsi[i] = huffsize[p];
  }
}


/* Outputting bytes to the file */

/* Emit a byte, taking 'action' if must suspend. */
#define emit_byte(state,val,action)  \
	{ *(state)->next_output_byte++ = (JOCTET) (val);  \
	  if (--(state)->free_in_buffer == 0)  \
	    if (! dump_buffer(state))  \
	      { action; } }


LOCAL(boolean)
dump_buffer (working_state * state)
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
{
  struct jpeg_destination_mgr * dest = state->cinfo->dest;

  if (! (*dest->empty_output_buffer) (state->cinfo))
    return FALSE;
  /* After a successful buffer dump, must reset buffer pointers */
  state->next_output_byte = dest->next_output_byte;
  state->free_in_buffer = dest->free_in_buffer;
  return TRUE;
}


/* Outputting bits to the file */

/* Only the right 24 bits of put_buffer are used; the valid bits are
 * left-justified in this part.  At most 16 bits can be passed to emit_bits
 * in one call, and we never retain more than 7 bits in put_buffer
 * between calls, so 24 bits are sufficient.
 */

INLINE
LOCAL(boolean)
emit_bits (working_state * state, unsigned int code, int size)
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
{
  /* This routine is heavily used, so it's worth coding tightly. */
  register INT32 put_buffer = (INT32) code;
  register int put_bits = state->cur.put_bits;

  /* if size is 0, caller used an invalid Huffman table entry */
  if (size == 0)
    ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);

  put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
  
  put_bits += size;		/* new number of bits in buffer */
  
  put_buffer <<= 24 - put_bits; /* align incoming bits */

  put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
  
  while (put_bits >= 8) {
    int c = (int) ((put_buffer >> 16) & 0xFF);
    
    emit_byte(state, c, return FALSE);
    if (c == 0xFF) {		/* need to stuff a zero byte? */
      emit_byte(state, 0, return FALSE);
    }
    put_buffer <<= 8;
    put_bits -= 8;
  }

  state->cur.put_buffer = put_buffer; /* update state variables */
  state->cur.put_bits = put_bits;

  return TRUE;
}


LOCAL(boolean)
flush_bits (working_state * state)
{
  if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
    return FALSE;
  state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */
  state->cur.put_bits = 0;
  return TRUE;
}


/* Encode a single block's worth of coefficients */

LOCAL(boolean)
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
		  c_derived_tbl *dctbl, c_derived_tbl *actbl)
{
  register int temp, temp2;
  register int nbits;
  register int k, r, i;
  
  /* Encode the DC coefficient difference per section F.1.2.1 */
  
  temp = temp2 = block[0] - last_dc_val;

  if (temp < 0) {
    temp = -temp;		/* temp is abs value of input */
    /* For a negative input, want temp2 = bitwise complement of abs(input) */
    /* This code assumes we are on a two's complement machine */
    temp2--;
  }
  
  /* Find the number of bits needed for the magnitude of the coefficient */
  nbits = 0;
  while (temp) {
    nbits++;
    temp >>= 1;
  }
  /* Check for out-of-range coefficient values.
   * Since we're encoding a difference, the range limit is twice as much.
   */
  if (nbits > MAX_COEF_BITS+1)
    ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
  
  /* Emit the Huffman-coded symbol for the number of bits */
  if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
    return FALSE;

  /* Emit that number of bits of the value, if positive, */
  /* or the complement of its magnitude, if negative. */
  if (nbits)			/* emit_bits rejects calls with size 0 */
    if (! emit_bits(state, (unsigned int) temp2, nbits))
      return FALSE;

  /* Encode the AC coefficients per section F.1.2.2 */
  
  r = 0;			/* r = run length of zeros */
  
  for (k = 1; k < DCTSIZE2; k++) {
    if ((temp = block[jpeg_natural_order[k]]) == 0) {
      r++;
    } else {
      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
      while (r > 15) {
	if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
	  return FALSE;
	r -= 16;
      }

      temp2 = temp;
      if (temp < 0) {
	temp = -temp;		/* temp is abs value of input */
	/* This code assumes we are on a two's complement machine */
	temp2--;
      }
      
      /* Find the number of bits needed for the magnitude of the coefficient */
      nbits = 1;		/* there must be at least one 1 bit */
      while ((temp >>= 1))
	nbits++;
      /* Check for out-of-range coefficient values */
      if (nbits > MAX_COEF_BITS)
	ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
      
      /* Emit Huffman symbol for run length / number of bits */
      i = (r << 4) + nbits;
      if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
	return FALSE;

      /* Emit that number of bits of the value, if positive, */
      /* or the complement of its magnitude, if negative. */
      if (! emit_bits(state, (unsigned int) temp2, nbits))
	return FALSE;
      
      r = 0;
    }
  }

  /* If the last coef(s) were zero, emit an end-of-block code */
  if (r > 0)
    if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
      return FALSE;

  return TRUE;
}


/*
 * Emit a restart marker & resynchronize predictions.
 */

LOCAL(boolean)
emit_restart (working_state * state, int restart_num)
{
  int ci;

  if (! flush_bits(state))
    return FALSE;

  emit_byte(state, 0xFF, return FALSE);
  emit_byte(state, JPEG_RST0 + restart_num, return FALSE);

  /* Re-initialize DC predictions to 0 */
  for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    state->cur.last_dc_val[ci] = 0;

  /* The restart counter is not updated until we successfully write the MCU. */

  return TRUE;
}


/*
 * Encode and output one MCU's worth of Huffman-compressed coefficients.
 */

METHODDEF(boolean)
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  working_state state;
  int blkn, ci;
  jpeg_component_info * compptr;

  /* Load up working state */
  state.next_output_byte = cinfo->dest->next_output_byte;
  state.free_in_buffer = cinfo->dest->free_in_buffer;
  ASSIGN_STATE(state.cur, entropy->saved);
  state.cinfo = cinfo;

  /* Emit restart marker if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! emit_restart(&state, entropy->next_restart_num))
	return FALSE;
  }

  /* Encode the MCU data blocks */
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    ci = cinfo->MCU_membership[blkn];
    compptr = cinfo->cur_comp_info[ci];
    if (! encode_one_block(&state,
			   MCU_data[blkn][0], state.cur.last_dc_val[ci],
			   entropy->dc_derived_tbls[compptr->dc_tbl_no],
			   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
      return FALSE;
    /* Update last_dc_val */
    state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
  }

  /* Completed MCU, so update state */
  cinfo->dest->next_output_byte = state.next_output_byte;
  cinfo->dest->free_in_buffer = state.free_in_buffer;
  ASSIGN_STATE(entropy->saved, state.cur);

  /* Update restart-interval state too */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0) {
      entropy->restarts_to_go = cinfo->restart_interval;
      entropy->next_restart_num++;
      entropy->next_restart_num &= 7;
    }
    entropy->restarts_to_go--;
  }

  return TRUE;
}


/*
 * Finish up at the end of a Huffman-compressed scan.
 */

METHODDEF(void)
finish_pass_huff (j_compress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  working_state state;

  /* Load up working state ... flush_bits needs it */
  state.next_output_byte = cinfo->dest->next_output_byte;
  state.free_in_buffer = cinfo->dest->free_in_buffer;
  ASSIGN_STATE(state.cur, entropy->saved);
  state.cinfo = cinfo;

  /* Flush out the last data */
  if (! flush_bits(&state))
    ERREXIT(cinfo, JERR_CANT_SUSPEND);

  /* Update state */
  cinfo->dest->next_output_byte = state.next_output_byte;
  cinfo->dest->free_in_buffer = state.free_in_buffer;
  ASSIGN_STATE(entropy->saved, state.cur);
}


/*
 * Huffman coding optimization.
 *
 * We first scan the supplied data and count the number of uses of each symbol
 * that is to be Huffman-coded. (This process MUST agree with the code above.)
 * Then we build a Huffman coding tree for the observed counts.
 * Symbols which are not needed at all for the particular image are not
 * assigned any code, which saves space in the DHT marker as well as in
 * the compressed data.
 */

#ifdef ENTROPY_OPT_SUPPORTED


/* Process a single block's worth of coefficients */

LOCAL(void)
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
		 long dc_counts[], long ac_counts[])
{
  register int temp;
  register int nbits;
  register int k, r;
  
  /* Encode the DC coefficient difference per section F.1.2.1 */
  
  temp = block[0] - last_dc_val;
  if (temp < 0)
    temp = -temp;
  
  /* Find the number of bits needed for the magnitude of the coefficient */
  nbits = 0;
  while (temp) {
    nbits++;
    temp >>= 1;
  }
  /* Check for out-of-range coefficient values.
   * Since we're encoding a difference, the range limit is twice as much.
   */
  if (nbits > MAX_COEF_BITS+1)
    ERREXIT(cinfo, JERR_BAD_DCT_COEF);

  /* Count the Huffman symbol for the number of bits */
  dc_counts[nbits]++;
  
  /* Encode the AC coefficients per section F.1.2.2 */
  
  r = 0;			/* r = run length of zeros */
  
  for (k = 1; k < DCTSIZE2; k++) {
    if ((temp = block[jpeg_natural_order[k]]) == 0) {
      r++;
    } else {
      /* if run length > 15, must emit special run-length-16 codes (0xF0) */
      while (r > 15) {
	ac_counts[0xF0]++;
	r -= 16;
      }
      
      /* Find the number of bits needed for the magnitude of the coefficient */
      if (temp < 0)
	temp = -temp;
      
      /* Find the number of bits needed for the magnitude of the coefficient */
      nbits = 1;		/* there must be at least one 1 bit */
      while ((temp >>= 1))
	nbits++;
      /* Check for out-of-range coefficient values */
      if (nbits > MAX_COEF_BITS)
	ERREXIT(cinfo, JERR_BAD_DCT_COEF);
      
      /* Count Huffman symbol for run length / number of bits */
      ac_counts[(r << 4) + nbits]++;
      
      r = 0;
    }
  }

  /* If the last coef(s) were zero, emit an end-of-block code */
  if (r > 0)
    ac_counts[0]++;
}


/*
 * Trial-encode one MCU's worth of Huffman-compressed coefficients.
 * No data is actually output, so no suspension return is possible.
 */

METHODDEF(boolean)
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int blkn, ci;
  jpeg_component_info * compptr;

  /* Take care of restart intervals if needed */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0) {
      /* Re-initialize DC predictions to 0 */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++)
	entropy->saved.last_dc_val[ci] = 0;
      /* Update restart state */
      entropy->restarts_to_go = cinfo->restart_interval;
    }
    entropy->restarts_to_go--;
  }

  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    ci = cinfo->MCU_membership[blkn];
    compptr = cinfo->cur_comp_info[ci];
    htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
		    entropy->dc_count_ptrs[compptr->dc_tbl_no],
		    entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
  }

  return TRUE;
}


/*
 * Generate the best Huffman code table for the given counts, fill htbl.
 * Note this is also used by jcphuff.c.
 *
 * The JPEG standard requires that no symbol be assigned a codeword of all
 * one bits (so that padding bits added at the end of a compressed segment
 * can't look like a valid code).  Because of the canonical ordering of
 * codewords, this just means that there must be an unused slot in the
 * longest codeword length category.  Section K.2 of the JPEG spec suggests
 * reserving such a slot by pretending that symbol 256 is a valid symbol
 * with count 1.  In theory that's not optimal; giving it count zero but
 * including it in the symbol set anyway should give a better Huffman code.
 * But the theoretically better code actually seems to come out worse in
 * practice, because it produces more all-ones bytes (which incur stuffed
 * zero bytes in the final file).  In any case the difference is tiny.
 *
 * The JPEG standard requires Huffman codes to be no more than 16 bits long.
 * If some symbols have a very small but nonzero probability, the Huffman tree
 * must be adjusted to meet the code length restriction.  We currently use
 * the adjustment method suggested in JPEG section K.2.  This method is *not*
 * optimal; it may not choose the best possible limited-length code.  But
 * typically only very-low-frequency symbols will be given less-than-optimal
 * lengths, so the code is almost optimal.  Experimental comparisons against
 * an optimal limited-length-code algorithm indicate that the difference is
 * microscopic --- usually less than a hundredth of a percent of total size.
 * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
 */

GLOBAL(void)
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
{
#define MAX_CLEN 32		/* assumed maximum initial code length */
  UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */
  int codesize[257];		/* codesize[k] = code length of symbol k */
  int others[257];		/* next symbol in current branch of tree */
  int c1, c2;
  int p, i, j;
  long v;

  /* This algorithm is explained in section K.2 of the JPEG standard */

  MEMZERO(bits, SIZEOF(bits));
  MEMZERO(codesize, SIZEOF(codesize));
  for (i = 0; i < 257; i++)
    others[i] = -1;		/* init links to empty */
  
  freq[256] = 1;		/* make sure 256 has a nonzero count */
  /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
   * that no real symbol is given code-value of all ones, because 256
   * will be placed last in the largest codeword category.
   */

  /* Huffman's basic algorithm to assign optimal code lengths to symbols */

  for (;;) {
    /* Find the smallest nonzero frequency, set c1 = its symbol */
    /* In case of ties, take the larger symbol number */
    c1 = -1;
    v = 1000000000L;
    for (i = 0; i <= 256; i++) {
      if (freq[i] && freq[i] <= v) {
	v = freq[i];
	c1 = i;
      }
    }

    /* Find the next smallest nonzero frequency, set c2 = its symbol */
    /* In case of ties, take the larger symbol number */
    c2 = -1;
    v = 1000000000L;
    for (i = 0; i <= 256; i++) {
      if (freq[i] && freq[i] <= v && i != c1) {
	v = freq[i];
	c2 = i;
      }
    }

    /* Done if we've merged everything into one frequency */
    if (c2 < 0)
      break;
    
    /* Else merge the two counts/trees */
    freq[c1] += freq[c2];
    freq[c2] = 0;

    /* Increment the codesize of everything in c1's tree branch */
    codesize[c1]++;
    while (others[c1] >= 0) {
      c1 = others[c1];
      codesize[c1]++;
    }
    
    others[c1] = c2;		/* chain c2 onto c1's tree branch */
    
    /* Increment the codesize of everything in c2's tree branch */
    codesize[c2]++;
    while (others[c2] >= 0) {
      c2 = others[c2];
      codesize[c2]++;
    }
  }

  /* Now count the number of symbols of each code length */
  for (i = 0; i <= 256; i++) {
    if (codesize[i]) {
      /* The JPEG standard seems to think that this can't happen, */
      /* but I'm paranoid... */
      if (codesize[i] > MAX_CLEN)
	ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);

      bits[codesize[i]]++;
    }
  }

  /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
   * Huffman procedure assigned any such lengths, we must adjust the coding.
   * Here is what the JPEG spec says about how this next bit works:
   * Since symbols are paired for the longest Huffman code, the symbols are
   * removed from this length category two at a time.  The prefix for the pair
   * (which is one bit shorter) is allocated to one of the pair; then,
   * skipping the BITS entry for that prefix length, a code word from the next
   * shortest nonzero BITS entry is converted into a prefix for two code words
   * one bit longer.
   */
  
  for (i = MAX_CLEN; i > 16; i--) {
    while (bits[i] > 0) {
      j = i - 2;		/* find length of new prefix to be used */
      while (bits[j] == 0)
	j--;
      
      bits[i] -= 2;		/* remove two symbols */
      bits[i-1]++;		/* one goes in this length */
      bits[j+1] += 2;		/* two new symbols in this length */
      bits[j]--;		/* symbol of this length is now a prefix */
    }
  }

  /* Remove the count for the pseudo-symbol 256 from the largest codelength */
  while (bits[i] == 0)		/* find largest codelength still in use */
    i--;
  bits[i]--;
  
  /* Return final symbol counts (only for lengths 0..16) */
  MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
  
  /* Return a list of the symbols sorted by code length */
  /* It's not real clear to me why we don't need to consider the codelength
   * changes made above, but the JPEG spec seems to think this works.
   */
  p = 0;
  for (i = 1; i <= MAX_CLEN; i++) {
    for (j = 0; j <= 255; j++) {
      if (codesize[j] == i) {
	htbl->huffval[p] = (UINT8) j;
	p++;
      }
    }
  }

  /* Set sent_table FALSE so updated table will be written to JPEG file. */
  htbl->sent_table = FALSE;
}


/*
 * Finish up a statistics-gathering pass and create the new Huffman tables.
 */

METHODDEF(void)
finish_pass_gather (j_compress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci, dctbl, actbl;
  jpeg_component_info * compptr;
  JHUFF_TBL **htblptr;
  boolean did_dc[NUM_HUFF_TBLS];
  boolean did_ac[NUM_HUFF_TBLS];

  /* It's important not to apply jpeg_gen_optimal_table more than once
   * per table, because it clobbers the input frequency counts!
   */
  MEMZERO(did_dc, SIZEOF(did_dc));
  MEMZERO(did_ac, SIZEOF(did_ac));

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    dctbl = compptr->dc_tbl_no;
    actbl = compptr->ac_tbl_no;
    if (! did_dc[dctbl]) {
      htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
      if (*htblptr == NULL)
	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
      did_dc[dctbl] = TRUE;
    }
    if (! did_ac[actbl]) {
      htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
      if (*htblptr == NULL)
	*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
      jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
      did_ac[actbl] = TRUE;
    }
  }
}


#endif /* ENTROPY_OPT_SUPPORTED */


/*
 * Module initialization routine for Huffman entropy encoding.
 */

GLOBAL(void)
jinit_huff_encoder (j_compress_ptr cinfo)
{
  huff_entropy_ptr entropy;
  int i;

  entropy = (huff_entropy_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(huff_entropy_encoder));
  cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
  entropy->pub.start_pass = start_pass_huff;

  /* Mark tables unallocated */
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
#ifdef ENTROPY_OPT_SUPPORTED
    entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
#endif
  }
}

--- NEW FILE: wrtarga.c ---
/*
 * wrtarga.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to write output images in Targa format.
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume output to
 * an ordinary stdio stream.
 *
 * Based on code contributed by Lee Daniel Crocker.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef TARGA_SUPPORTED


/*
 * To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
 * This is not yet implemented.
 */

#if BITS_IN_JSAMPLE != 8
  Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif

/*
 * The output buffer needs to be writable by fwrite().  On PCs, we must
 * allocate the buffer in near data space, because we are assuming small-data
 * memory model, wherein fwrite() can't reach far memory.  If you need to
 * process very wide images on a PC, you might have to compile in large-memory
 * model, or else replace fwrite() with a putc() loop --- which will be much
 * slower.
 */


/* Private version of data destination object */

typedef struct {
  struct djpeg_dest_struct pub;	/* public fields */

  char *iobuffer;		/* physical I/O buffer */
  JDIMENSION buffer_width;	/* width of one row */
} tga_dest_struct;

typedef tga_dest_struct * tga_dest_ptr;


LOCAL(void)
write_header (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, int num_colors)
/* Create and write a Targa header */
{
  char targaheader[18];

  /* Set unused fields of header to 0 */
  MEMZERO(targaheader, SIZEOF(targaheader));

  if (num_colors > 0) {
    targaheader[1] = 1;		/* color map type 1 */
    targaheader[5] = (char) (num_colors & 0xFF);
    targaheader[6] = (char) (num_colors >> 8);
    targaheader[7] = 24;	/* 24 bits per cmap entry */
  }

  targaheader[12] = (char) (cinfo->output_width & 0xFF);
  targaheader[13] = (char) (cinfo->output_width >> 8);
  targaheader[14] = (char) (cinfo->output_height & 0xFF);
  targaheader[15] = (char) (cinfo->output_height >> 8);
  targaheader[17] = 0x20;	/* Top-down, non-interlaced */

  if (cinfo->out_color_space == JCS_GRAYSCALE) {
    targaheader[2] = 3;		/* image type = uncompressed gray-scale */
    targaheader[16] = 8;	/* bits per pixel */
  } else {			/* must be RGB */
    if (num_colors > 0) {
      targaheader[2] = 1;	/* image type = colormapped RGB */
      targaheader[16] = 8;
    } else {
      targaheader[2] = 2;	/* image type = uncompressed RGB */
      targaheader[16] = 24;
    }
  }

  if (JFWRITE(dinfo->output_file, targaheader, 18) != (size_t) 18)
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * Write some pixel data.
 * In this module rows_supplied will always be 1.
 */

METHODDEF(void)
put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		JDIMENSION rows_supplied)
/* used for unquantized full-color output */
{
  tga_dest_ptr dest = (tga_dest_ptr) dinfo;
  register JSAMPROW inptr;
  register char * outptr;
  register JDIMENSION col;

  inptr = dest->pub.buffer[0];
  outptr = dest->iobuffer;
  for (col = cinfo->output_width; col > 0; col--) {
    outptr[0] = (char) GETJSAMPLE(inptr[2]); /* RGB to BGR order */
    outptr[1] = (char) GETJSAMPLE(inptr[1]);
    outptr[2] = (char) GETJSAMPLE(inptr[0]);
    inptr += 3, outptr += 3;
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}

METHODDEF(void)
put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
	       JDIMENSION rows_supplied)
/* used for grayscale OR quantized color output */
{
  tga_dest_ptr dest = (tga_dest_ptr) dinfo;
  register JSAMPROW inptr;
  register char * outptr;
  register JDIMENSION col;

  inptr = dest->pub.buffer[0];
  outptr = dest->iobuffer;
  for (col = cinfo->output_width; col > 0; col--) {
    *outptr++ = (char) GETJSAMPLE(*inptr++);
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


/*
 * Write some demapped pixel data when color quantization is in effect.
 * For Targa, this is only applied to grayscale data.
 */

METHODDEF(void)
put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		   JDIMENSION rows_supplied)
{
  tga_dest_ptr dest = (tga_dest_ptr) dinfo;
  register JSAMPROW inptr;
  register char * outptr;
  register JSAMPROW color_map0 = cinfo->colormap[0];
  register JDIMENSION col;

  inptr = dest->pub.buffer[0];
  outptr = dest->iobuffer;
  for (col = cinfo->output_width; col > 0; col--) {
    *outptr++ = (char) GETJSAMPLE(color_map0[GETJSAMPLE(*inptr++)]);
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


/*
 * Startup: write the file header.
 */

METHODDEF(void)
start_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  tga_dest_ptr dest = (tga_dest_ptr) dinfo;
  int num_colors, i;
  FILE *outfile;

  if (cinfo->out_color_space == JCS_GRAYSCALE) {
    /* Targa doesn't have a mapped grayscale format, so we will */
    /* demap quantized gray output.  Never emit a colormap. */
    write_header(cinfo, dinfo, 0);
    if (cinfo->quantize_colors)
      dest->pub.put_pixel_rows = put_demapped_gray;
    else
      dest->pub.put_pixel_rows = put_gray_rows;
  } else if (cinfo->out_color_space == JCS_RGB) {
    if (cinfo->quantize_colors) {
      /* We only support 8-bit colormap indexes, so only 256 colors */
      num_colors = cinfo->actual_number_of_colors;
      if (num_colors > 256)
	ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, num_colors);
      write_header(cinfo, dinfo, num_colors);
      /* Write the colormap.  Note Targa uses BGR byte order */
      outfile = dest->pub.output_file;
      for (i = 0; i < num_colors; i++) {
	putc(GETJSAMPLE(cinfo->colormap[2][i]), outfile);
	putc(GETJSAMPLE(cinfo->colormap[1][i]), outfile);
	putc(GETJSAMPLE(cinfo->colormap[0][i]), outfile);
      }
      dest->pub.put_pixel_rows = put_gray_rows;
    } else {
      write_header(cinfo, dinfo, 0);
      dest->pub.put_pixel_rows = put_pixel_rows;
    }
  } else {
    ERREXIT(cinfo, JERR_TGA_COLORSPACE);
  }
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_output_tga (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  /* Make sure we wrote the output file OK */
  fflush(dinfo->output_file);
  if (ferror(dinfo->output_file))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * The module selection routine for Targa format output.
 */

GLOBAL(djpeg_dest_ptr)
jinit_write_targa (j_decompress_ptr cinfo)
{
  tga_dest_ptr dest;

  /* Create module interface object, fill in method pointers */
  dest = (tga_dest_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(tga_dest_struct));
  dest->pub.start_output = start_output_tga;
  dest->pub.finish_output = finish_output_tga;

  /* Calculate output image dimensions so we can allocate space */
  jpeg_calc_output_dimensions(cinfo);

  /* Create I/O buffer.  Note we make this near on a PC. */
  dest->buffer_width = cinfo->output_width * cinfo->output_components;
  dest->iobuffer = (char *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(size_t) (dest->buffer_width * SIZEOF(char)));

  /* Create decompressor output buffer. */
  dest->pub.buffer = (*cinfo->mem->alloc_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width, (JDIMENSION) 1);
  dest->pub.buffer_height = 1;

  return (djpeg_dest_ptr) dest;
}

#endif /* TARGA_SUPPORTED */

--- NEW FILE: testimg.jpg ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: ltconfig ---
#! /bin/sh

# ltconfig - Create a system-specific libtool.
# Copyright (C) 1996-1998 Free Software Foundation, Inc.
# Gordon Matzigkeit <gord at gnu.ai.mit.edu>, 1996
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
[...1473 lines suppressed...]
# vanish in a puff of smoke.
if test "${COLLECT_NAMES+set}" != set; then
  COLLECT_NAMES=
  export COLLECT_NAMES
fi

EOF
  ;;
esac

# Append the ltmain.sh script.
cat "$ltmain" >> $ofile || (rm -f $ofile; exit 1)

chmod +x $ofile
exit 0

# Local Variables:
# mode:shell-script
# sh-indentation:2
# End:

--- NEW FILE: jcsample.c ---
/*
 * jcsample.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains downsampling routines.
 *
 * Downsampling input data is counted in "row groups".  A row group
 * is defined to be max_v_samp_factor pixel rows of each component,
 * from which the downsampler produces v_samp_factor sample rows.
 * A single row group is processed in each call to the downsampler module.
 *
 * The downsampler is responsible for edge-expansion of its output data
 * to fill an integral number of DCT blocks horizontally.  The source buffer
 * may be modified if it is helpful for this purpose (the source buffer is
 * allocated wide enough to correspond to the desired output width).
 * The caller (the prep controller) is responsible for vertical padding.
 *
 * The downsampler may request "context rows" by setting need_context_rows
 * during startup.  In this case, the input arrays will contain at least
 * one row group's worth of pixels above and below the passed-in data;
 * the caller will create dummy rows at image top and bottom by replicating
 * the first or last real pixel row.
 *
 * An excellent reference for image resampling is
 *   Digital Image Warping, George Wolberg, 1990.
 *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
 *
 * The downsampling algorithm used here is a simple average of the source
 * pixels covered by the output pixel.  The hi-falutin sampling literature
 * refers to this as a "box filter".  In general the characteristics of a box
 * filter are not very good, but for the specific cases we normally use (1:1
 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
 * nearly so bad.  If you intend to use other sampling ratios, you'd be well
 * advised to improve this code.
 *
 * A simple input-smoothing capability is provided.  This is mainly intended
 * for cleaning up color-dithered GIF input files (if you find it inadequate,
 * we suggest using an external filtering program such as pnmconvol).  When
 * enabled, each input pixel P is replaced by a weighted sum of itself and its
 * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
 * where SF = (smoothing_factor / 1024).
 * Currently, smoothing is only supported for 2h2v sampling factors.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Pointer to routine to downsample a single component */
typedef JMETHOD(void, downsample1_ptr,
		(j_compress_ptr cinfo, jpeg_component_info * compptr,
		 JSAMPARRAY input_data, JSAMPARRAY output_data));

/* Private subobject */

typedef struct {
  struct jpeg_downsampler pub;	/* public fields */

  /* Downsampling method pointers, one per component */
  downsample1_ptr methods[MAX_COMPONENTS];
} my_downsampler;

typedef my_downsampler * my_downsample_ptr;


/*
 * Initialize for a downsampling pass.
 */

METHODDEF(void)
start_pass_downsample (j_compress_ptr cinfo)
{
  /* no work for now */
}


/*
 * Expand a component horizontally from width input_cols to width output_cols,
 * by duplicating the rightmost samples.
 */

LOCAL(void)
expand_right_edge (JSAMPARRAY image_data, int num_rows,
		   JDIMENSION input_cols, JDIMENSION output_cols)
{
  register JSAMPROW ptr;
  register JSAMPLE pixval;
  register int count;
  int row;
  int numcols = (int) (output_cols - input_cols);

  if (numcols > 0) {
    for (row = 0; row < num_rows; row++) {
      ptr = image_data[row] + input_cols;
      pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
      for (count = numcols; count > 0; count--)
	*ptr++ = pixval;
    }
  }
}


/*
 * Do downsampling for a whole row group (all components).
 *
 * In this version we simply downsample each component independently.
 */

METHODDEF(void)
sep_downsample (j_compress_ptr cinfo,
		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
{
  my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
  int ci;
  jpeg_component_info * compptr;
  JSAMPARRAY in_ptr, out_ptr;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    in_ptr = input_buf[ci] + in_row_index;
    out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
    (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
  }
}


/*
 * Downsample pixel values of a single component.
 * One row group is processed per call.
 * This version handles arbitrary integral sampling ratios, without smoothing.
 * Note that this version is not actually used for customary sampling ratios.
 */

METHODDEF(void)
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
		JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
  JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  JSAMPROW inptr, outptr;
  INT32 outvalue;

  h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
  v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
  numpix = h_expand * v_expand;
  numpix2 = numpix/2;

  /* Expand input data enough to let all the output samples be generated
   * by the standard loop.  Special-casing padded output would be more
   * efficient.
   */
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
		    cinfo->image_width, output_cols * h_expand);

  inrow = 0;
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    outptr = output_data[outrow];
    for (outcol = 0, outcol_h = 0; outcol < output_cols;
	 outcol++, outcol_h += h_expand) {
      outvalue = 0;
      for (v = 0; v < v_expand; v++) {
	inptr = input_data[inrow+v] + outcol_h;
	for (h = 0; h < h_expand; h++) {
	  outvalue += (INT32) GETJSAMPLE(*inptr++);
	}
      }
      *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    }
    inrow += v_expand;
  }
}


/*
 * Downsample pixel values of a single component.
 * This version handles the special case of a full-size component,
 * without smoothing.
 */

METHODDEF(void)
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
		     JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  /* Copy the data */
  jcopy_sample_rows(input_data, 0, output_data, 0,
		    cinfo->max_v_samp_factor, cinfo->image_width);
  /* Edge-expand */
  expand_right_edge(output_data, cinfo->max_v_samp_factor,
		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
}


/*
 * Downsample pixel values of a single component.
 * This version handles the common case of 2:1 horizontal and 1:1 vertical,
 * without smoothing.
 *
 * A note about the "bias" calculations: when rounding fractional values to
 * integer, we do not want to always round 0.5 up to the next integer.
 * If we did that, we'd introduce a noticeable bias towards larger values.
 * Instead, this code is arranged so that 0.5 will be rounded up or down at
 * alternate pixel locations (a simple ordered dither pattern).
 */

METHODDEF(void)
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
		 JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  int outrow;
  JDIMENSION outcol;
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  register JSAMPROW inptr, outptr;
  register int bias;

  /* Expand input data enough to let all the output samples be generated
   * by the standard loop.  Special-casing padded output would be more
   * efficient.
   */
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
		    cinfo->image_width, output_cols * 2);

  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    outptr = output_data[outrow];
    inptr = input_data[outrow];
    bias = 0;			/* bias = 0,1,0,1,... for successive samples */
    for (outcol = 0; outcol < output_cols; outcol++) {
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
			      + bias) >> 1);
      bias ^= 1;		/* 0=>1, 1=>0 */
      inptr += 2;
    }
  }
}


/*
 * Downsample pixel values of a single component.
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 * without smoothing.
 */

METHODDEF(void)
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
		 JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  int inrow, outrow;
  JDIMENSION outcol;
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  register JSAMPROW inptr0, inptr1, outptr;
  register int bias;

  /* Expand input data enough to let all the output samples be generated
   * by the standard loop.  Special-casing padded output would be more
   * efficient.
   */
  expand_right_edge(input_data, cinfo->max_v_samp_factor,
		    cinfo->image_width, output_cols * 2);

  inrow = 0;
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    outptr = output_data[outrow];
    inptr0 = input_data[inrow];
    inptr1 = input_data[inrow+1];
    bias = 1;			/* bias = 1,2,1,2,... for successive samples */
    for (outcol = 0; outcol < output_cols; outcol++) {
      *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
			      + bias) >> 2);
      bias ^= 3;		/* 1=>2, 2=>1 */
      inptr0 += 2; inptr1 += 2;
    }
    inrow += 2;
  }
}


#ifdef INPUT_SMOOTHING_SUPPORTED

/*
 * Downsample pixel values of a single component.
 * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
 * with smoothing.  One row of context is required.
 */

METHODDEF(void)
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
			JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  int inrow, outrow;
  JDIMENSION colctr;
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
  INT32 membersum, neighsum, memberscale, neighscale;

  /* Expand input data enough to let all the output samples be generated
   * by the standard loop.  Special-casing padded output would be more
   * efficient.
   */
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
		    cinfo->image_width, output_cols * 2);

  /* We don't bother to form the individual "smoothed" input pixel values;
   * we can directly compute the output which is the average of the four
   * smoothed values.  Each of the four member pixels contributes a fraction
   * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
   * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
   * output.  The four corner-adjacent neighbor pixels contribute a fraction
   * SF to just one smoothed pixel, or SF/4 to the final output; while the
   * eight edge-adjacent neighbors contribute SF to each of two smoothed
   * pixels, or SF/2 overall.  In order to use integer arithmetic, these
   * factors are scaled by 2^16 = 65536.
   * Also recall that SF = smoothing_factor / 1024.
   */

  memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
  neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */

  inrow = 0;
  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    outptr = output_data[outrow];
    inptr0 = input_data[inrow];
    inptr1 = input_data[inrow+1];
    above_ptr = input_data[inrow-1];
    below_ptr = input_data[inrow+2];

    /* Special case for first column: pretend column -1 is same as column 0 */
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    neighsum += neighsum;
    neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    membersum = membersum * memberscale + neighsum * neighscale;
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;

    for (colctr = output_cols - 2; colctr > 0; colctr--) {
      /* sum of pixels directly mapped to this output element */
      membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
      /* sum of edge-neighbor pixels */
      neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
      /* The edge-neighbors count twice as much as corner-neighbors */
      neighsum += neighsum;
      /* Add in the corner-neighbors */
      neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
      /* form final output scaled up by 2^16 */
      membersum = membersum * memberscale + neighsum * neighscale;
      /* round, descale and output it */
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
      inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    }

    /* Special case for last column */
    membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    neighsum += neighsum;
    neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    membersum = membersum * memberscale + neighsum * neighscale;
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);

    inrow += 2;
  }
}


/*
 * Downsample pixel values of a single component.
 * This version handles the special case of a full-size component,
 * with smoothing.  One row of context is required.
 */

METHODDEF(void)
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
			    JSAMPARRAY input_data, JSAMPARRAY output_data)
{
  int outrow;
  JDIMENSION colctr;
  JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
  register JSAMPROW inptr, above_ptr, below_ptr, outptr;
  INT32 membersum, neighsum, memberscale, neighscale;
  int colsum, lastcolsum, nextcolsum;

  /* Expand input data enough to let all the output samples be generated
   * by the standard loop.  Special-casing padded output would be more
   * efficient.
   */
  expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
		    cinfo->image_width, output_cols);

  /* Each of the eight neighbor pixels contributes a fraction SF to the
   * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
   * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
   * Also recall that SF = smoothing_factor / 1024.
   */

  memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
  neighscale = cinfo->smoothing_factor * 64; /* scaled SF */

  for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    outptr = output_data[outrow];
    inptr = input_data[outrow];
    above_ptr = input_data[outrow-1];
    below_ptr = input_data[outrow+1];

    /* Special case for first column */
    colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
	     GETJSAMPLE(*inptr);
    membersum = GETJSAMPLE(*inptr++);
    nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
		 GETJSAMPLE(*inptr);
    neighsum = colsum + (colsum - membersum) + nextcolsum;
    membersum = membersum * memberscale + neighsum * neighscale;
    *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    lastcolsum = colsum; colsum = nextcolsum;

    for (colctr = output_cols - 2; colctr > 0; colctr--) {
      membersum = GETJSAMPLE(*inptr++);
      above_ptr++; below_ptr++;
      nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
		   GETJSAMPLE(*inptr);
      neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
      membersum = membersum * memberscale + neighsum * neighscale;
      *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
      lastcolsum = colsum; colsum = nextcolsum;
    }

    /* Special case for last column */
    membersum = GETJSAMPLE(*inptr);
    neighsum = lastcolsum + (colsum - membersum) + colsum;
    membersum = membersum * memberscale + neighsum * neighscale;
    *outptr = (JSAMPLE) ((membersum + 32768) >> 16);

  }
}

#endif /* INPUT_SMOOTHING_SUPPORTED */


/*
 * Module initialization routine for downsampling.
 * Note that we must select a routine for each component.
 */

GLOBAL(void)
jinit_downsampler (j_compress_ptr cinfo)
{
  my_downsample_ptr downsample;
  int ci;
  jpeg_component_info * compptr;
  boolean smoothok = TRUE;

  downsample = (my_downsample_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_downsampler));
  cinfo->downsample = (struct jpeg_downsampler *) downsample;
  downsample->pub.start_pass = start_pass_downsample;
  downsample->pub.downsample = sep_downsample;
  downsample->pub.need_context_rows = FALSE;

  if (cinfo->CCIR601_sampling)
    ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);

  /* Verify we can handle the sampling factors, and set up method pointers */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
#ifdef INPUT_SMOOTHING_SUPPORTED
      if (cinfo->smoothing_factor) {
	downsample->methods[ci] = fullsize_smooth_downsample;
	downsample->pub.need_context_rows = TRUE;
      } else
#endif
	downsample->methods[ci] = fullsize_downsample;
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
      smoothok = FALSE;
      downsample->methods[ci] = h2v1_downsample;
    } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
#ifdef INPUT_SMOOTHING_SUPPORTED
      if (cinfo->smoothing_factor) {
	downsample->methods[ci] = h2v2_smooth_downsample;
	downsample->pub.need_context_rows = TRUE;
      } else
#endif
	downsample->methods[ci] = h2v2_downsample;
    } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
      smoothok = FALSE;
      downsample->methods[ci] = int_downsample;
    } else
      ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
  }

#ifdef INPUT_SMOOTHING_SUPPORTED
  if (cinfo->smoothing_factor && !smoothok)
    TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
#endif
}

--- NEW FILE: makeproj.mac ---
--
-- makeproj.mac
--
-- This AppleScript builds Code Warrior PRO Release 2 project files for the
-- libjpeg library as well as the test programs 'cjpeg', 'djpeg', 'jpegtran'.
-- (We'd distribute real project files, except they're not text
-- and would create maintenance headaches.)
--
-- The script then compiles and links the library and the test programs.
-- NOTE: if you haven't already created a 'jconfig.h' file, the script
-- automatically copies 'jconfig.mac' to 'jconfig.h'.
--
-- To use this script, you must have AppleScript 1.1 or later installed
-- and a suitable AppleScript editor like Script Editor or Script Debugger
-- (http://www.latenightsw.com). Open this file with your AppleScript
-- editor and execute the "run" command to build the projects.
--
-- Thanks to Dan Sears and Don Agro for this script.
-- Questions about this script can be addressed to dogpark at interlog.com
--

on run

	choose folder with prompt ">>> Select IJG source folder <<<"
	set ijg_folder to result

	choose folder with prompt ">>> Select MetroWerks folder <<<"
	set cw_folder to result

	-- if jconfig.h doesn't already exist, copy jconfig.mac

	tell application "Finder"
		if not (exists file "jconfig.h" of ijg_folder) then
			duplicate {file "jconfig.mac" of folder ijg_folder}
			select file "jconfig.mac copy" of folder ijg_folder
			set name of selection to "jconfig.h"
		end if
	end tell

	tell application "CodeWarrior IDE 2.1"
	  with timeout of 10000 seconds

		-- create libjpeg project

		activate
		Create Project (ijg_folder as string) & "libjpeg.proj"
		Set Preferences of panel "Target Settings" to {Target Name:"libjpeg"}
		Set Preferences of panel "PPC Project" to {File Name:"libjpeg"}
		Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
		Set Preferences of panel "PPC Project" to {Project Type:library}
		Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
		Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
		Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
		Set Preferences of panel "PPC Linker" to {Generate SYM File:false}

		Add Files (ijg_folder as string) & "jcapimin.c" To Segment 1
		Add Files (ijg_folder as string) & "jcapistd.c" To Segment 1
		Add Files (ijg_folder as string) & "jctrans.c" To Segment 1
		Add Files (ijg_folder as string) & "jcparam.c" To Segment 1
		Add Files (ijg_folder as string) & "jdatadst.c" To Segment 1
		Add Files (ijg_folder as string) & "jcinit.c" To Segment 1
		Add Files (ijg_folder as string) & "jcmaster.c" To Segment 1
		Add Files (ijg_folder as string) & "jcmarker.c" To Segment 1
		Add Files (ijg_folder as string) & "jcmainct.c" To Segment 1
		Add Files (ijg_folder as string) & "jcprepct.c" To Segment 1
		Add Files (ijg_folder as string) & "jccoefct.c" To Segment 1
		Add Files (ijg_folder as string) & "jccolor.c" To Segment 1
		Add Files (ijg_folder as string) & "jcsample.c" To Segment 1
		Add Files (ijg_folder as string) & "jchuff.c" To Segment 1
		Add Files (ijg_folder as string) & "jcphuff.c" To Segment 1
		Add Files (ijg_folder as string) & "jcdctmgr.c" To Segment 1
		Add Files (ijg_folder as string) & "jfdctfst.c" To Segment 1
		Add Files (ijg_folder as string) & "jfdctflt.c" To Segment 1
		Add Files (ijg_folder as string) & "jfdctint.c" To Segment 1
		Add Files (ijg_folder as string) & "jdapimin.c" To Segment 1
		Add Files (ijg_folder as string) & "jdapistd.c" To Segment 1
		Add Files (ijg_folder as string) & "jdtrans.c" To Segment 1
		Add Files (ijg_folder as string) & "jdatasrc.c" To Segment 1
		Add Files (ijg_folder as string) & "jdmaster.c" To Segment 1
		Add Files (ijg_folder as string) & "jdinput.c" To Segment 1
		Add Files (ijg_folder as string) & "jdmarker.c" To Segment 1
		Add Files (ijg_folder as string) & "jdhuff.c" To Segment 1
		Add Files (ijg_folder as string) & "jdphuff.c" To Segment 1
		Add Files (ijg_folder as string) & "jdmainct.c" To Segment 1
		Add Files (ijg_folder as string) & "jdcoefct.c" To Segment 1
		Add Files (ijg_folder as string) & "jdpostct.c" To Segment 1
		Add Files (ijg_folder as string) & "jddctmgr.c" To Segment 1
		Add Files (ijg_folder as string) & "jidctfst.c" To Segment 1
		Add Files (ijg_folder as string) & "jidctflt.c" To Segment 1
		Add Files (ijg_folder as string) & "jidctint.c" To Segment 1
		Add Files (ijg_folder as string) & "jidctred.c" To Segment 1
		Add Files (ijg_folder as string) & "jdsample.c" To Segment 1
		Add Files (ijg_folder as string) & "jdcolor.c" To Segment 1
		Add Files (ijg_folder as string) & "jquant1.c" To Segment 1
		Add Files (ijg_folder as string) & "jquant2.c" To Segment 1
		Add Files (ijg_folder as string) & "jdmerge.c" To Segment 1
		Add Files (ijg_folder as string) & "jcomapi.c" To Segment 1
		Add Files (ijg_folder as string) & "jutils.c" To Segment 1
		Add Files (ijg_folder as string) & "jerror.c" To Segment 1
		Add Files (ijg_folder as string) & "jmemmgr.c" To Segment 1
		Add Files (ijg_folder as string) & "jmemmac.c" To Segment 1

		-- compile and link the library

		Make Project
		Close Project

		-- create cjpeg project

		activate
		Create Project (ijg_folder as string) & "cjpeg.proj"
		Set Preferences of panel "Target Settings" to {Target Name:"cjpeg"}
		Set Preferences of panel "PPC Project" to {File Name:"cjpeg"}
		Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
		Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
		Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
		Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
		Set Preferences of panel "PPC Linker" to {Generate SYM File:false}

		Add Files (ijg_folder as string) & "cjpeg.c" To Segment 1
		Add Files (ijg_folder as string) & "rdppm.c" To Segment 1
		Add Files (ijg_folder as string) & "rdgif.c" To Segment 1
		Add Files (ijg_folder as string) & "rdtarga.c" To Segment 1
		Add Files (ijg_folder as string) & "rdrle.c" To Segment 1
		Add Files (ijg_folder as string) & "rdbmp.c" To Segment 1
		Add Files (ijg_folder as string) & "rdswitch.c" To Segment 1
		Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1

		Add Files (ijg_folder as string) & "libjpeg" To Segment 2

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4

		-- compile and link cjpeg

		Make Project
		Close Project

		-- create djpeg project

		activate
		Create Project (ijg_folder as string) & "djpeg.proj"
		Set Preferences of panel "Target Settings" to {Target Name:"djpeg"}
		Set Preferences of panel "PPC Project" to {File Name:"djpeg"}
		Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
		Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
		Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
		Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
		Set Preferences of panel "PPC Linker" to {Generate SYM File:false}

		Add Files (ijg_folder as string) & "djpeg.c" To Segment 1
		Add Files (ijg_folder as string) & "wrppm.c" To Segment 1
		Add Files (ijg_folder as string) & "wrgif.c" To Segment 1
		Add Files (ijg_folder as string) & "wrtarga.c" To Segment 1
		Add Files (ijg_folder as string) & "wrrle.c" To Segment 1
		Add Files (ijg_folder as string) & "wrbmp.c" To Segment 1
		Add Files (ijg_folder as string) & "rdcolmap.c" To Segment 1
		Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1

		Add Files (ijg_folder as string) & "libjpeg" To Segment 2

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4

		-- compile and link djpeg

		Make Project
		Close Project

		-- create jpegtran project

		activate
		Create Project (ijg_folder as string) & "jpegtran.proj"
		Set Preferences of panel "Target Settings" to {Target Name:"jpegtran"}
		Set Preferences of panel "PPC Project" to {File Name:"jpegtran"}
		Set Preferences of panel "Target Settings" to {Linker:"MacOS PPC Linker"}
		Set Preferences of panel "C/C++ Compiler" to {ANSI Strict:true}
		Set Preferences of panel "C/C++ Compiler" to {Enums Always Ints:true}
		Set Preferences of panel "PPC Codegen" to {Struct Alignment:PowerPC}
		Set Preferences of panel "PPC Linker" to {Generate SYM File:false}

		Add Files (ijg_folder as string) & "jpegtran.c" To Segment 1
		Add Files (ijg_folder as string) & "rdswitch.c" To Segment 1
		Add Files (ijg_folder as string) & "cdjpeg.c" To Segment 1
		Add Files (ijg_folder as string) & "transupp.c" To Segment 1

		Add Files (ijg_folder as string) & "libjpeg" To Segment 2

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL C.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:Metrowerks Standard Library:MSL C:Bin:MSL SIOUX.PPC.Lib" To Segment 3
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:Runtime:Runtime PPC:MSL RuntimePPC.Lib" To Segment 3

		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:InterfaceLib" To Segment 4
		Add Files (cw_folder as string) & "Metrowerks CodeWarrior:MacOS Support:Libraries:MacOS Common:MathLib" To Segment 4

		-- compile and link jpegtran

		Make Project
		Close Project

		quit

	  end timeout
	end tell
end run

--- NEW FILE: makvms.opt ---
! A pointer to the VAX/VMS C Run-Time Shareable Library.
! This file is needed by makefile.mms and makefile.vms,
! but only for the older VAX C compiler.  DEC C does not need it.
Sys$Library:VAXCRTL.EXE /Share

--- NEW FILE: makdjpeg.st ---
; Project file for Independent JPEG Group's software
;
; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
; Thanks to Frank Moehle (Frank.Moehle at arbi.informatik.uni-oldenburg.de),
; Dr. B. Setzepfandt (bernd at gina.uni-muenster.de),
; and Guido Vollbeding (guivol at esc.de).
;
; To use this file, rename it to djpeg.prj.
; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
; Read installation instructions before trying to make the program!
;
;
;      * * * Output file * * *
djpeg.ttp
;
; * * * COMPILER OPTIONS * * *  
.C[-P]        ; absolute calls
.C[-M]        ; and no string merging, folks
.C[-w-cln]    ; no "constant is long" warnings
.C[-w-par]    ; no "parameter xxxx unused"
.C[-w-rch]    ; no "unreachable code"
.C[-wsig]     ; warn if significant digits may be lost
=
; * * * * List of modules * * * * 
pcstart.o
djpeg.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,jversion.h)
cdjpeg.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdcolmap.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
wrppm.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
wrgif.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
wrtarga.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
wrbmp.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
wrrle.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
libjpeg.lib        ; built by libjpeg.prj
pcfltlib.lib       ; floating point library
; the float library can be omitted if you've turned off DCT_FLOAT_SUPPORTED
pcstdlib.lib       ; standard library
pcextlib.lib       ; extended library

--- NEW FILE: jccolor.c ---
/*
 * jccolor.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains input colorspace conversion routines.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Private subobject */

typedef struct {
  struct jpeg_color_converter pub; /* public fields */

  /* Private state for RGB->YCC conversion */
  INT32 * rgb_ycc_tab;		/* => table for RGB to YCbCr conversion */
} my_color_converter;

typedef my_color_converter * my_cconvert_ptr;


/**************** RGB -> YCbCr conversion: most common case **************/

/*
 * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
 * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
 * The conversion equations to be implemented are therefore
 *	Y  =  0.29900 * R + 0.58700 * G + 0.11400 * B
 *	Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B  + CENTERJSAMPLE
 *	Cr =  0.50000 * R - 0.41869 * G - 0.08131 * B  + CENTERJSAMPLE
 * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
 * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2,
 * rather than CENTERJSAMPLE, for Cb and Cr.  This gave equal positive and
 * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0)
 * were not represented exactly.  Now we sacrifice exact representation of
 * maximum red and maximum blue in order to get exact grayscales.
 *
 * To avoid floating-point arithmetic, we represent the fractional constants
 * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
 * the products by 2^16, with appropriate rounding, to get the correct answer.
 *
 * For even more speed, we avoid doing any multiplications in the inner loop
 * by precalculating the constants times R,G,B for all possible values.
 * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
 * for 12-bit samples it is still acceptable.  It's not very reasonable for
 * 16-bit samples, but if you want lossless storage you shouldn't be changing
 * colorspace anyway.
 * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included
 * in the tables to save adding them separately in the inner loop.
 */

#define SCALEBITS	16	/* speediest right-shift on some machines */
#define CBCR_OFFSET	((INT32) CENTERJSAMPLE << SCALEBITS)
#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))

/* We allocate one big table and divide it up into eight parts, instead of
 * doing eight alloc_small requests.  This lets us use a single table base
 * address, which can be held in a register in the inner loops on many
 * machines (more than can hold all eight addresses, anyway).
 */

#define R_Y_OFF		0			/* offset to R => Y section */
#define G_Y_OFF		(1*(MAXJSAMPLE+1))	/* offset to G => Y section */
#define B_Y_OFF		(2*(MAXJSAMPLE+1))	/* etc. */
#define R_CB_OFF	(3*(MAXJSAMPLE+1))
#define G_CB_OFF	(4*(MAXJSAMPLE+1))
#define B_CB_OFF	(5*(MAXJSAMPLE+1))
#define R_CR_OFF	B_CB_OFF		/* B=>Cb, R=>Cr are the same */
#define G_CR_OFF	(6*(MAXJSAMPLE+1))
#define B_CR_OFF	(7*(MAXJSAMPLE+1))
#define TABLE_SIZE	(8*(MAXJSAMPLE+1))


/*
 * Initialize for RGB->YCC colorspace conversion.
 */

METHODDEF(void)
rgb_ycc_start (j_compress_ptr cinfo)
{
  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
  INT32 * rgb_ycc_tab;
  INT32 i;

  /* Allocate and fill in the conversion tables. */
  cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(TABLE_SIZE * SIZEOF(INT32)));

  for (i = 0; i <= MAXJSAMPLE; i++) {
    rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i;
    rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i;
    rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i     + ONE_HALF;
    rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i;
    rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i;
    /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr.
     * This ensures that the maximum output will round to MAXJSAMPLE
     * not MAXJSAMPLE+1, and thus that we don't have to range-limit.
     */
    rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
/*  B=>Cb and R=>Cr tables are the same
    rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i    + CBCR_OFFSET + ONE_HALF-1;
*/
    rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i;
    rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i;
  }
}


/*
 * Convert some rows of samples to the JPEG colorspace.
 *
 * Note that we change from the application's interleaved-pixel format
 * to our internal noninterleaved, one-plane-per-component format.
 * The input buffer is therefore three times as wide as the output buffer.
 *
 * A starting row offset is provided only for the output buffer.  The caller
 * can easily adjust the passed input_buf value to accommodate any row
 * offset required on that side.
 */

METHODDEF(void)
rgb_ycc_convert (j_compress_ptr cinfo,
		 JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
		 JDIMENSION output_row, int num_rows)
{
  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
  register int r, g, b;
  register INT32 * ctab = cconvert->rgb_ycc_tab;
  register JSAMPROW inptr;
  register JSAMPROW outptr0, outptr1, outptr2;
  register JDIMENSION col;
  JDIMENSION num_cols = cinfo->image_width;

  while (--num_rows >= 0) {
    inptr = *input_buf++;
    outptr0 = output_buf[0][output_row];
    outptr1 = output_buf[1][output_row];
    outptr2 = output_buf[2][output_row];
    output_row++;
    for (col = 0; col < num_cols; col++) {
      r = GETJSAMPLE(inptr[RGB_RED]);
      g = GETJSAMPLE(inptr[RGB_GREEN]);
      b = GETJSAMPLE(inptr[RGB_BLUE]);
      inptr += RGB_PIXELSIZE;
      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
       * must be too; we do not need an explicit range-limiting operation.
       * Hence the value being shifted is never negative, and we don't
       * need the general RIGHT_SHIFT macro.
       */
      /* Y */
      outptr0[col] = (JSAMPLE)
		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
		 >> SCALEBITS);
      /* Cb */
      outptr1[col] = (JSAMPLE)
		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
		 >> SCALEBITS);
      /* Cr */
      outptr2[col] = (JSAMPLE)
		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
		 >> SCALEBITS);
    }
  }
}


/**************** Cases other than RGB -> YCbCr **************/


/*
 * Convert some rows of samples to the JPEG colorspace.
 * This version handles RGB->grayscale conversion, which is the same
 * as the RGB->Y portion of RGB->YCbCr.
 * We assume rgb_ycc_start has been called (we only use the Y tables).
 */

METHODDEF(void)
rgb_gray_convert (j_compress_ptr cinfo,
		  JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
		  JDIMENSION output_row, int num_rows)
{
  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
  register int r, g, b;
  register INT32 * ctab = cconvert->rgb_ycc_tab;
  register JSAMPROW inptr;
  register JSAMPROW outptr;
  register JDIMENSION col;
  JDIMENSION num_cols = cinfo->image_width;

  while (--num_rows >= 0) {
    inptr = *input_buf++;
    outptr = output_buf[0][output_row];
    output_row++;
    for (col = 0; col < num_cols; col++) {
      r = GETJSAMPLE(inptr[RGB_RED]);
      g = GETJSAMPLE(inptr[RGB_GREEN]);
      b = GETJSAMPLE(inptr[RGB_BLUE]);
      inptr += RGB_PIXELSIZE;
      /* Y */
      outptr[col] = (JSAMPLE)
		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
		 >> SCALEBITS);
    }
  }
}


/*
 * Convert some rows of samples to the JPEG colorspace.
 * This version handles Adobe-style CMYK->YCCK conversion,
 * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same
 * conversion as above, while passing K (black) unchanged.
 * We assume rgb_ycc_start has been called.
 */

METHODDEF(void)
cmyk_ycck_convert (j_compress_ptr cinfo,
		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
		   JDIMENSION output_row, int num_rows)
{
  my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
  register int r, g, b;
  register INT32 * ctab = cconvert->rgb_ycc_tab;
  register JSAMPROW inptr;
  register JSAMPROW outptr0, outptr1, outptr2, outptr3;
  register JDIMENSION col;
  JDIMENSION num_cols = cinfo->image_width;

  while (--num_rows >= 0) {
    inptr = *input_buf++;
    outptr0 = output_buf[0][output_row];
    outptr1 = output_buf[1][output_row];
    outptr2 = output_buf[2][output_row];
    outptr3 = output_buf[3][output_row];
    output_row++;
    for (col = 0; col < num_cols; col++) {
      r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
      g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
      b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
      /* K passes through as-is */
      outptr3[col] = inptr[3];	/* don't need GETJSAMPLE here */
      inptr += 4;
      /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations
       * must be too; we do not need an explicit range-limiting operation.
       * Hence the value being shifted is never negative, and we don't
       * need the general RIGHT_SHIFT macro.
       */
      /* Y */
      outptr0[col] = (JSAMPLE)
		((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF])
		 >> SCALEBITS);
      /* Cb */
      outptr1[col] = (JSAMPLE)
		((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF])
		 >> SCALEBITS);
      /* Cr */
      outptr2[col] = (JSAMPLE)
		((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF])
		 >> SCALEBITS);
    }
  }
}


/*
 * Convert some rows of samples to the JPEG colorspace.
 * This version handles grayscale output with no conversion.
 * The source can be either plain grayscale or YCbCr (since Y == gray).
 */

METHODDEF(void)
grayscale_convert (j_compress_ptr cinfo,
		   JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
		   JDIMENSION output_row, int num_rows)
{
  register JSAMPROW inptr;
  register JSAMPROW outptr;
  register JDIMENSION col;
  JDIMENSION num_cols = cinfo->image_width;
  int instride = cinfo->input_components;

  while (--num_rows >= 0) {
    inptr = *input_buf++;
    outptr = output_buf[0][output_row];
    output_row++;
    for (col = 0; col < num_cols; col++) {
      outptr[col] = inptr[0];	/* don't need GETJSAMPLE() here */
      inptr += instride;
    }
  }
}


/*
 * Convert some rows of samples to the JPEG colorspace.
 * This version handles multi-component colorspaces without conversion.
 * We assume input_components == num_components.
 */

METHODDEF(void)
null_convert (j_compress_ptr cinfo,
	      JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
	      JDIMENSION output_row, int num_rows)
{
  register JSAMPROW inptr;
  register JSAMPROW outptr;
  register JDIMENSION col;
  register int ci;
  int nc = cinfo->num_components;
  JDIMENSION num_cols = cinfo->image_width;

  while (--num_rows >= 0) {
    /* It seems fastest to make a separate pass for each component. */
    for (ci = 0; ci < nc; ci++) {
      inptr = *input_buf;
      outptr = output_buf[ci][output_row];
      for (col = 0; col < num_cols; col++) {
	outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */
	inptr += nc;
      }
    }
    input_buf++;
    output_row++;
  }
}


/*
 * Empty method for start_pass.
 */

METHODDEF(void)
null_method (j_compress_ptr cinfo)
{
  /* no work needed */
}


/*
 * Module initialization routine for input colorspace conversion.
 */

GLOBAL(void)
jinit_color_converter (j_compress_ptr cinfo)
{
  my_cconvert_ptr cconvert;

  cconvert = (my_cconvert_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_color_converter));
  cinfo->cconvert = (struct jpeg_color_converter *) cconvert;
  /* set start_pass to null method until we find out differently */
  cconvert->pub.start_pass = null_method;

  /* Make sure input_components agrees with in_color_space */
  switch (cinfo->in_color_space) {
  case JCS_GRAYSCALE:
    if (cinfo->input_components != 1)
      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
    break;

  case JCS_RGB:
#if RGB_PIXELSIZE != 3
    if (cinfo->input_components != RGB_PIXELSIZE)
      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
    break;
#endif /* else share code with YCbCr */

  case JCS_YCbCr:
    if (cinfo->input_components != 3)
      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
    break;

  case JCS_CMYK:
  case JCS_YCCK:
    if (cinfo->input_components != 4)
      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
    break;

  default:			/* JCS_UNKNOWN can be anything */
    if (cinfo->input_components < 1)
      ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
    break;
  }

  /* Check num_components, set conversion method based on requested space */
  switch (cinfo->jpeg_color_space) {
  case JCS_GRAYSCALE:
    if (cinfo->num_components != 1)
      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
    if (cinfo->in_color_space == JCS_GRAYSCALE)
      cconvert->pub.color_convert = grayscale_convert;
    else if (cinfo->in_color_space == JCS_RGB) {
      cconvert->pub.start_pass = rgb_ycc_start;
      cconvert->pub.color_convert = rgb_gray_convert;
    } else if (cinfo->in_color_space == JCS_YCbCr)
      cconvert->pub.color_convert = grayscale_convert;
    else
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    break;

  case JCS_RGB:
    if (cinfo->num_components != 3)
      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
    if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3)
      cconvert->pub.color_convert = null_convert;
    else
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    break;

  case JCS_YCbCr:
    if (cinfo->num_components != 3)
      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
    if (cinfo->in_color_space == JCS_RGB) {
      cconvert->pub.start_pass = rgb_ycc_start;
      cconvert->pub.color_convert = rgb_ycc_convert;
    } else if (cinfo->in_color_space == JCS_YCbCr)
      cconvert->pub.color_convert = null_convert;
    else
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    break;

  case JCS_CMYK:
    if (cinfo->num_components != 4)
      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
    if (cinfo->in_color_space == JCS_CMYK)
      cconvert->pub.color_convert = null_convert;
    else
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    break;

  case JCS_YCCK:
    if (cinfo->num_components != 4)
      ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
    if (cinfo->in_color_space == JCS_CMYK) {
      cconvert->pub.start_pass = rgb_ycc_start;
      cconvert->pub.color_convert = cmyk_ycck_convert;
    } else if (cinfo->in_color_space == JCS_YCCK)
      cconvert->pub.color_convert = null_convert;
    else
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    break;

  default:			/* allow null conversion of JCS_UNKNOWN */
    if (cinfo->jpeg_color_space != cinfo->in_color_space ||
	cinfo->num_components != cinfo->input_components)
      ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
    cconvert->pub.color_convert = null_convert;
    break;
  }
}

--- NEW FILE: jconfig.st ---
/* jconfig.st --- jconfig.h for Atari ST/STE/TT using Pure C or Turbo C. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
#define INCOMPLETE_TYPES_BROKEN	/* suppress undefined-structure warnings */

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#define ALIGN_TYPE  long	/* apparently double is a weird size? */

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define TWO_FILE_COMMANDLINE	/* optional -- undef if you like Unix style */
/* Note: if you undef TWO_FILE_COMMANDLINE, you may need to define
 * USE_SETMODE.  Some Atari compilers require it, some do not.
 */
#define NEED_SIGNAL_CATCHER	/* needed if you use jmemname.c */
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: change.log ---
CHANGE LOG for Independent JPEG Group's JPEG software


Version 6b  27-Mar-1998
-----------------------

jpegtran has new features for lossless image transformations (rotation
and flipping) as well as "lossless" reduction to grayscale.

jpegtran now copies comments by default; it has a -copy switch to enable
copying all APPn blocks as well, or to suppress comments.  (Formerly it
always suppressed comments and APPn blocks.)  jpegtran now also preserves
JFIF version and resolution information.

New decompressor library feature: COM and APPn markers found in the input
file can be saved in memory for later use by the application.  (Before,
you had to code this up yourself with a custom marker processor.)

There is an unused field "void * client_data" now in compress and decompress
parameter structs; this may be useful in some applications.

JFIF version number information is now saved by the decoder and accepted by
the encoder.  jpegtran uses this to copy the source file's version number,
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX
extensions but claim to be version 1.01.  Applications that generate their
own JFXX extension markers also (finally) have a supported way to cause the
encoder to emit JFIF version number 1.02.

djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather
than as unknown APP0 markers.

In -verbose mode, djpeg and rdjpgcom will try to print the contents of
APP12 markers as text.  Some digital cameras store useful text information
in APP12 markers.

Handling of truncated data streams is more robust: blocks beyond the one in
which the error occurs will be output as uniform gray, or left unchanged
if decoding a progressive JPEG.  The appearance no longer depends on the
Huffman tables being used.

Huffman tables are checked for validity much more carefully than before.

To avoid the Unisys LZW patent, djpeg's GIF output capability has been
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability
has been removed altogether.  We're not happy about it either, but there
seems to be no good alternative.

The configure script now supports building libjpeg as a shared library
on many flavors of Unix (all the ones that GNU libtool knows how to
build shared libraries for).  Use "./configure --enable-shared" to
try this out.

New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio.
Also, a jconfig file and a build script for Metrowerks CodeWarrior
on Apple Macintosh.  makefile.dj has been updated for DJGPP v2, and there
are miscellaneous other minor improvements in the makefiles.

jmemmac.c now knows how to create temporary files following Mac System 7
conventions.

djpeg's -map switch is now able to read raw-format PPM files reliably.

cjpeg -progressive -restart no longer generates any unnecessary DRI markers.

Multiple calls to jpeg_simple_progression for a single JPEG object
no longer leak memory.


Version 6a  7-Feb-96
--------------------

Library initialization sequence modified to detect version mismatches
and struct field packing mismatches between library and calling application.
This change requires applications to be recompiled, but does not require
any application source code change.

All routine declarations changed to the style "GLOBAL(type) name ...",
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the
routine's return type as an argument.  This makes it possible to add
Microsoft-style linkage keywords to all the routines by changing just
these macros.  Note that any application code that was using these macros
will have to be changed.

DCT coefficient quantization tables are now stored in normal array order
rather than zigzag order.  Application code that calls jpeg_add_quant_table,
or otherwise manipulates quantization tables directly, will need to be
changed.  If you need to make such code work with either older or newer
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is
recommended.

djpeg's trace capability now dumps DQT tables in natural order, not zigzag
order.  This allows the trace output to be made into a "-qtables" file
more easily.

New system-dependent memory manager module for use on Apple Macintosh.

Fix bug in cjpeg's -smooth option: last one or two scanlines would be
duplicates of the prior line unless the image height mod 16 was 1 or 2.

Repair minor problems in VMS, BCC, MC6 makefiles.

New configure script based on latest GNU Autoconf.

Correct the list of include files needed by MetroWerks C for ccommand().

Numerous small documentation updates.


Version 6  2-Aug-95
-------------------

Progressive JPEG support: library can read and write full progressive JPEG
files.  A "buffered image" mode supports incremental decoding for on-the-fly
display of progressive images.  Simply recompiling an existing IJG-v5-based
decoder with v6 should allow it to read progressive files, though of course
without any special progressive display.

New "jpegtran" application performs lossless transcoding between different
JPEG formats; primarily, it can be used to convert baseline to progressive
JPEG and vice versa.  In support of jpegtran, the library now allows lossless
reading and writing of JPEG files as DCT coefficient arrays.  This ability
may be of use in other applications.

Notes for programmers:
* We changed jpeg_start_decompress() to be able to suspend; this makes all
decoding modes available to suspending-input applications.  However,
existing applications that use suspending input will need to be changed
to check the return value from jpeg_start_decompress().  You don't need to
do anything if you don't use a suspending data source.
* We changed the interface to the virtual array routines: access_virt_array
routines now take a count of the number of rows to access this time.  The
last parameter to request_virt_array routines is now interpreted as the
maximum number of rows that may be accessed at once, but not necessarily
the height of every access.


Version 5b  15-Mar-95
---------------------

Correct bugs with grayscale images having v_samp_factor > 1.

jpeg_write_raw_data() now supports output suspension.

Correct bugs in "configure" script for case of compiling in
a directory other than the one containing the source files.

Repair bug in jquant1.c: sometimes didn't use as many colors as it could.

Borland C makefile and jconfig file work under either MS-DOS or OS/2.

Miscellaneous improvements to documentation.


Version 5a  7-Dec-94
--------------------

Changed color conversion roundoff behavior so that grayscale values are
represented exactly.  (This causes test image files to change.)

Make ordered dither use 16x16 instead of 4x4 pattern for a small quality
improvement.

New configure script based on latest GNU Autoconf.
Fix configure script to handle CFLAGS correctly.
Rename *.auto files to *.cfg, so that configure script still works if
file names have been truncated for DOS.

Fix bug in rdbmp.c: didn't allow for extra data between header and image.

Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data.

Fix several bugs in rdrle.c.

NEED_SHORT_EXTERNAL_NAMES option was broken.

Revise jerror.h/jerror.c for more flexibility in message table.

Repair oversight in jmemname.c NO_MKTEMP case: file could be there
but unreadable.


Version 5  24-Sep-94
--------------------

Version 5 represents a nearly complete redesign and rewrite of the IJG
software.  Major user-visible changes include:
  * Automatic configuration simplifies installation for most Unix systems.
  * A range of speed vs. image quality tradeoffs are supported.
    This includes resizing of an image during decompression: scaling down
    by a factor of 1/2, 1/4, or 1/8 is handled very efficiently.
  * New programs rdjpgcom and wrjpgcom allow insertion and extraction
    of text comments in a JPEG file.

The application programmer's interface to the library has changed completely.
Notable improvements include:
  * We have eliminated the use of callback routines for handling the
    uncompressed image data.  The application now sees the library as a
    set of routines that it calls to read or write image data on a
    scanline-by-scanline basis.
  * The application image data is represented in a conventional interleaved-
    pixel format, rather than as a separate array for each color channel.
    This can save a copying step in many programs.
  * The handling of compressed data has been cleaned up: the application can
    supply routines to source or sink the compressed data.  It is possible to
    suspend processing on source/sink buffer overrun, although this is not
    supported in all operating modes.
  * All static state has been eliminated from the library, so that multiple
    instances of compression or decompression can be active concurrently.
  * JPEG abbreviated datastream formats are supported, ie, quantization and
    Huffman tables can be stored separately from the image data.
  * And not only that, but the documentation of the library has improved
    considerably!


The last widely used release before the version 5 rewrite was version 4A of
18-Feb-93.  Change logs before that point have been discarded, since they
are not of much interest after the rewrite.

--- NEW FILE: jidctint.c ---
/*
 * jidctint.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a slow-but-accurate integer implementation of the
 * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 * must also perform dequantization of the input coefficients.
 *
 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 * on each row (or vice versa, but it's more convenient to emit a row at
 * a time).  Direct algorithms are also available, but they are much more
 * complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on an algorithm described in
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
 * The primary algorithm described there uses 11 multiplies and 29 adds.
 * We use their alternate method with 12 multiplies and 32 adds.
 * The advantage of this method is that no data path contains more than one
 * multiplication; this allows a very simple and accurate implementation in
 * scaled fixed-point arithmetic, with a minimal number of shifts.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_ISLOW_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * The poop on this scaling stuff is as follows:
 *
 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
 * larger than the true IDCT outputs.  The final outputs are therefore
 * a factor of N larger than desired; since N=8 this can be cured by
 * a simple right shift at the end of the algorithm.  The advantage of
 * this arrangement is that we save two multiplications per 1-D IDCT,
 * because the y0 and y4 inputs need not be divided by sqrt(N).
 *
 * We have to do addition and subtraction of the integer inputs, which
 * is no problem, and multiplication by fractional constants, which is
 * a problem to do in integer arithmetic.  We multiply all the constants
 * by CONST_SCALE and convert them to integer constants (thus retaining
 * CONST_BITS bits of precision in the constants).  After doing a
 * multiplication we have to divide the product by CONST_SCALE, with proper
 * rounding, to produce the correct output.  This division can be done
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
 * as long as possible so that partial sums can be added together with
 * full fractional precision.
 *
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
 * they are represented to better-than-integral precision.  These outputs
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
 * with the recommended scaling.  (To scale up 12-bit sample data further, an
 * intermediate INT32 array would be needed.)
 *
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
 * shows that the values given below are the most effective.
 */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_298631336  ((INT32)  2446)	/* FIX(0.298631336) */
#define FIX_0_390180644  ((INT32)  3196)	/* FIX(0.390180644) */
#define FIX_0_541196100  ((INT32)  4433)	/* FIX(0.541196100) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_175875602  ((INT32)  9633)	/* FIX(1.175875602) */
#define FIX_1_501321110  ((INT32)  12299)	/* FIX(1.501321110) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_1_961570560  ((INT32)  16069)	/* FIX(1.961570560) */
#define FIX_2_053119869  ((INT32)  16819)	/* FIX(2.053119869) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_072711026  ((INT32)  25172)	/* FIX(3.072711026) */
#else
#define FIX_0_298631336  FIX(0.298631336)
#define FIX_0_390180644  FIX(0.390180644)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_175875602  FIX(1.175875602)
#define FIX_1_501321110  FIX(1.501321110)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_1_961570560  FIX(1.961570560)
#define FIX_2_053119869  FIX(2.053119869)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_072711026  FIX(3.072711026)
#endif


/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce an int result.  In this module, both inputs and result
 * are 16 bits or less, so either int or short multiply will work.
 */

#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients.
 */

GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
		 JCOEFPTR coef_block,
		 JSAMPARRAY output_buf, JDIMENSION output_col)
{
  INT32 tmp0, tmp1, tmp2, tmp3;
  INT32 tmp10, tmp11, tmp12, tmp13;
  INT32 z1, z2, z3, z4, z5;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */
  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  /* furthermore, we scale the results by 2**PASS1_BITS. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; ctr--) {
    /* Due to quantization, we will usually find that many of the input
     * coefficients are zero, especially the AC terms.  We can exploit this
     * by short-circuiting the IDCT calculation for any column in which all
     * the AC terms are zero.  In that case each output is equal to the
     * DC coefficient (with scale factor as needed).
     * With typical images and quantization tables, half or more of the
     * column DCT calculations can be simplified this way.
     */
    
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
	inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      wsptr[DCTSIZE*4] = dcval;
      wsptr[DCTSIZE*5] = dcval;
      wsptr[DCTSIZE*6] = dcval;
      wsptr[DCTSIZE*7] = dcval;
      
      inptr++;			/* advance pointers to next column */
      quantptr++;
      wsptr++;
      continue;
    }
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);

    tmp0 = (z2 + z3) << CONST_BITS;
    tmp1 = (z2 - z3) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
    wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
    
    inptr++;			/* advance pointers to next column */
    quantptr++;
    wsptr++;
  }
  
  /* Pass 2: process rows from work array, store into output array. */
  /* Note that we must descale the results by a factor of 8 == 2**3, */
  /* and also undo the PASS1_BITS scaling. */

  wsptr = workspace;
  for (ctr = 0; ctr < DCTSIZE; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* Rows of zeroes can be exploited in the same way as we did with columns.
     * However, the column calculation has created many nonzero AC terms, so
     * the simplification applies less often (typically 5% to 10% of the time).
     * On machines with very fast multiplication, it's possible that the
     * test takes more time than it's worth.  In that case this section
     * may be commented out.
     */
    
#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      outptr[4] = dcval;
      outptr[5] = dcval;
      outptr[6] = dcval;
      outptr[7] = dcval;

      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part: reverse the even part of the forward DCT. */
    /* The rotator is sqrt(2)*c(-6). */
    
    z2 = (INT32) wsptr[2];
    z3 = (INT32) wsptr[6];
    
    z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
    tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
    tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
    
    tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
    tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
    
    tmp10 = tmp0 + tmp3;
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    /* Odd part per figure 8; the matrix is unitary and hence its
     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
     */
    
    tmp0 = (INT32) wsptr[7];
    tmp1 = (INT32) wsptr[5];
    tmp2 = (INT32) wsptr[3];
    tmp3 = (INT32) wsptr[1];
    
    z1 = tmp0 + tmp3;
    z2 = tmp1 + tmp2;
    z3 = tmp0 + tmp2;
    z4 = tmp1 + tmp3;
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
    
    tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
    tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
    tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
    tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
    
    z3 += z5;
    z4 += z5;
    
    tmp0 += z1 + z3;
    tmp1 += z2 + z4;
    tmp2 += z2 + z3;
    tmp3 += z1 + z4;
    
    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
					  CONST_BITS+PASS1_BITS+3)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}

#endif /* DCT_ISLOW_SUPPORTED */

--- NEW FILE: wrbmp.c ---
/*
 * wrbmp.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to write output images in Microsoft "BMP"
 * format (MS Windows 3.x and OS/2 1.x flavors).
 * Either 8-bit colormapped or 24-bit full-color format can be written.
 * No compression is supported.
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume output to
 * an ordinary stdio stream.
 *
 * This code contributed by James Arthur Boucher.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef BMP_SUPPORTED


/*
 * To support 12-bit JPEG data, we'd have to scale output down to 8 bits.
 * This is not yet implemented.
 */

#if BITS_IN_JSAMPLE != 8
  Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif

/*
 * Since BMP stores scanlines bottom-to-top, we have to invert the image
 * from JPEG's top-to-bottom order.  To do this, we save the outgoing data
 * in a virtual array during put_pixel_row calls, then actually emit the
 * BMP file during finish_output.  The virtual array contains one JSAMPLE per
 * pixel if the output is grayscale or colormapped, three if it is full color.
 */

/* Private version of data destination object */

typedef struct {
  struct djpeg_dest_struct pub;	/* public fields */

  boolean is_os2;		/* saves the OS2 format request flag */

  jvirt_sarray_ptr whole_image;	/* needed to reverse row order */
  JDIMENSION data_width;	/* JSAMPLEs per row */
  JDIMENSION row_width;		/* physical width of one row in the BMP file */
  int pad_bytes;		/* number of padding bytes needed per row */
  JDIMENSION cur_output_row;	/* next row# to write to virtual array */
} bmp_dest_struct;

typedef bmp_dest_struct * bmp_dest_ptr;


/* Forward declarations */
LOCAL(void) write_colormap
	JPP((j_decompress_ptr cinfo, bmp_dest_ptr dest,
	     int map_colors, int map_entry_size));


/*
 * Write some pixel data.
 * In this module rows_supplied will always be 1.
 */

METHODDEF(void)
put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		JDIMENSION rows_supplied)
/* This version is for writing 24-bit pixels */
{
  bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
  JSAMPARRAY image_ptr;
  register JSAMPROW inptr, outptr;
  register JDIMENSION col;
  int pad;

  /* Access next row in virtual array */
  image_ptr = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, dest->whole_image,
     dest->cur_output_row, (JDIMENSION) 1, TRUE);
  dest->cur_output_row++;

  /* Transfer data.  Note destination values must be in BGR order
   * (even though Microsoft's own documents say the opposite).
   */
  inptr = dest->pub.buffer[0];
  outptr = image_ptr[0];
  for (col = cinfo->output_width; col > 0; col--) {
    outptr[2] = *inptr++;	/* can omit GETJSAMPLE() safely */
    outptr[1] = *inptr++;
    outptr[0] = *inptr++;
    outptr += 3;
  }

  /* Zero out the pad bytes. */
  pad = dest->pad_bytes;
  while (--pad >= 0)
    *outptr++ = 0;
}

METHODDEF(void)
put_gray_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
	       JDIMENSION rows_supplied)
/* This version is for grayscale OR quantized color output */
{
  bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
  JSAMPARRAY image_ptr;
  register JSAMPROW inptr, outptr;
  register JDIMENSION col;
  int pad;

  /* Access next row in virtual array */
  image_ptr = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, dest->whole_image,
     dest->cur_output_row, (JDIMENSION) 1, TRUE);
  dest->cur_output_row++;

  /* Transfer data. */
  inptr = dest->pub.buffer[0];
  outptr = image_ptr[0];
  for (col = cinfo->output_width; col > 0; col--) {
    *outptr++ = *inptr++;	/* can omit GETJSAMPLE() safely */
  }

  /* Zero out the pad bytes. */
  pad = dest->pad_bytes;
  while (--pad >= 0)
    *outptr++ = 0;
}


/*
 * Startup: normally writes the file header.
 * In this module we may as well postpone everything until finish_output.
 */

METHODDEF(void)
start_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  /* no work here */
}


/*
 * Finish up at the end of the file.
 *
 * Here is where we really output the BMP file.
 *
 * First, routines to write the Windows and OS/2 variants of the file header.
 */

LOCAL(void)
write_bmp_header (j_decompress_ptr cinfo, bmp_dest_ptr dest)
/* Write a Windows-style BMP file header, including colormap if needed */
{
  char bmpfileheader[14];
  char bmpinfoheader[40];
#define PUT_2B(array,offset,value)  \
	(array[offset] = (char) ((value) & 0xFF), \
	 array[offset+1] = (char) (((value) >> 8) & 0xFF))
#define PUT_4B(array,offset,value)  \
	(array[offset] = (char) ((value) & 0xFF), \
	 array[offset+1] = (char) (((value) >> 8) & 0xFF), \
	 array[offset+2] = (char) (((value) >> 16) & 0xFF), \
	 array[offset+3] = (char) (((value) >> 24) & 0xFF))
  INT32 headersize, bfSize;
  int bits_per_pixel, cmap_entries;

  /* Compute colormap size and total file size */
  if (cinfo->out_color_space == JCS_RGB) {
    if (cinfo->quantize_colors) {
      /* Colormapped RGB */
      bits_per_pixel = 8;
      cmap_entries = 256;
    } else {
      /* Unquantized, full color RGB */
      bits_per_pixel = 24;
      cmap_entries = 0;
    }
  } else {
    /* Grayscale output.  We need to fake a 256-entry colormap. */
    bits_per_pixel = 8;
    cmap_entries = 256;
  }
  /* File size */
  headersize = 14 + 40 + cmap_entries * 4; /* Header and colormap */
  bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height;
  
  /* Set unused fields of header to 0 */
  MEMZERO(bmpfileheader, SIZEOF(bmpfileheader));
  MEMZERO(bmpinfoheader, SIZEOF(bmpinfoheader));

  /* Fill the file header */
  bmpfileheader[0] = 0x42;	/* first 2 bytes are ASCII 'B', 'M' */
  bmpfileheader[1] = 0x4D;
  PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */
  /* we leave bfReserved1 & bfReserved2 = 0 */
  PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */

  /* Fill the info header (Microsoft calls this a BITMAPINFOHEADER) */
  PUT_2B(bmpinfoheader, 0, 40);	/* biSize */
  PUT_4B(bmpinfoheader, 4, cinfo->output_width); /* biWidth */
  PUT_4B(bmpinfoheader, 8, cinfo->output_height); /* biHeight */
  PUT_2B(bmpinfoheader, 12, 1);	/* biPlanes - must be 1 */
  PUT_2B(bmpinfoheader, 14, bits_per_pixel); /* biBitCount */
  /* we leave biCompression = 0, for none */
  /* we leave biSizeImage = 0; this is correct for uncompressed data */
  if (cinfo->density_unit == 2) { /* if have density in dots/cm, then */
    PUT_4B(bmpinfoheader, 24, (INT32) (cinfo->X_density*100)); /* XPels/M */
    PUT_4B(bmpinfoheader, 28, (INT32) (cinfo->Y_density*100)); /* XPels/M */
  }
  PUT_2B(bmpinfoheader, 32, cmap_entries); /* biClrUsed */
  /* we leave biClrImportant = 0 */

  if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14)
    ERREXIT(cinfo, JERR_FILE_WRITE);
  if (JFWRITE(dest->pub.output_file, bmpinfoheader, 40) != (size_t) 40)
    ERREXIT(cinfo, JERR_FILE_WRITE);

  if (cmap_entries > 0)
    write_colormap(cinfo, dest, cmap_entries, 4);
}


LOCAL(void)
write_os2_header (j_decompress_ptr cinfo, bmp_dest_ptr dest)
/* Write an OS2-style BMP file header, including colormap if needed */
{
  char bmpfileheader[14];
  char bmpcoreheader[12];
  INT32 headersize, bfSize;
  int bits_per_pixel, cmap_entries;

  /* Compute colormap size and total file size */
  if (cinfo->out_color_space == JCS_RGB) {
    if (cinfo->quantize_colors) {
      /* Colormapped RGB */
      bits_per_pixel = 8;
      cmap_entries = 256;
    } else {
      /* Unquantized, full color RGB */
      bits_per_pixel = 24;
      cmap_entries = 0;
    }
  } else {
    /* Grayscale output.  We need to fake a 256-entry colormap. */
    bits_per_pixel = 8;
    cmap_entries = 256;
  }
  /* File size */
  headersize = 14 + 12 + cmap_entries * 3; /* Header and colormap */
  bfSize = headersize + (INT32) dest->row_width * (INT32) cinfo->output_height;
  
  /* Set unused fields of header to 0 */
  MEMZERO(bmpfileheader, SIZEOF(bmpfileheader));
  MEMZERO(bmpcoreheader, SIZEOF(bmpcoreheader));

  /* Fill the file header */
  bmpfileheader[0] = 0x42;	/* first 2 bytes are ASCII 'B', 'M' */
  bmpfileheader[1] = 0x4D;
  PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */
  /* we leave bfReserved1 & bfReserved2 = 0 */
  PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */

  /* Fill the info header (Microsoft calls this a BITMAPCOREHEADER) */
  PUT_2B(bmpcoreheader, 0, 12);	/* bcSize */
  PUT_2B(bmpcoreheader, 4, cinfo->output_width); /* bcWidth */
  PUT_2B(bmpcoreheader, 6, cinfo->output_height); /* bcHeight */
  PUT_2B(bmpcoreheader, 8, 1);	/* bcPlanes - must be 1 */
  PUT_2B(bmpcoreheader, 10, bits_per_pixel); /* bcBitCount */

  if (JFWRITE(dest->pub.output_file, bmpfileheader, 14) != (size_t) 14)
    ERREXIT(cinfo, JERR_FILE_WRITE);
  if (JFWRITE(dest->pub.output_file, bmpcoreheader, 12) != (size_t) 12)
    ERREXIT(cinfo, JERR_FILE_WRITE);

  if (cmap_entries > 0)
    write_colormap(cinfo, dest, cmap_entries, 3);
}


/*
 * Write the colormap.
 * Windows uses BGR0 map entries; OS/2 uses BGR entries.
 */

LOCAL(void)
write_colormap (j_decompress_ptr cinfo, bmp_dest_ptr dest,
		int map_colors, int map_entry_size)
{
  JSAMPARRAY colormap = cinfo->colormap;
  int num_colors = cinfo->actual_number_of_colors;
  FILE * outfile = dest->pub.output_file;
  int i;

  if (colormap != NULL) {
    if (cinfo->out_color_components == 3) {
      /* Normal case with RGB colormap */
      for (i = 0; i < num_colors; i++) {
	putc(GETJSAMPLE(colormap[2][i]), outfile);
	putc(GETJSAMPLE(colormap[1][i]), outfile);
	putc(GETJSAMPLE(colormap[0][i]), outfile);
	if (map_entry_size == 4)
	  putc(0, outfile);
      }
    } else {
      /* Grayscale colormap (only happens with grayscale quantization) */
      for (i = 0; i < num_colors; i++) {
	putc(GETJSAMPLE(colormap[0][i]), outfile);
	putc(GETJSAMPLE(colormap[0][i]), outfile);
	putc(GETJSAMPLE(colormap[0][i]), outfile);
	if (map_entry_size == 4)
	  putc(0, outfile);
      }
    }
  } else {
    /* If no colormap, must be grayscale data.  Generate a linear "map". */
    for (i = 0; i < 256; i++) {
      putc(i, outfile);
      putc(i, outfile);
      putc(i, outfile);
      if (map_entry_size == 4)
	putc(0, outfile);
    }
  }
  /* Pad colormap with zeros to ensure specified number of colormap entries */ 
  if (i > map_colors)
    ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, i);
  for (; i < map_colors; i++) {
    putc(0, outfile);
    putc(0, outfile);
    putc(0, outfile);
    if (map_entry_size == 4)
      putc(0, outfile);
  }
}


METHODDEF(void)
finish_output_bmp (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  bmp_dest_ptr dest = (bmp_dest_ptr) dinfo;
  register FILE * outfile = dest->pub.output_file;
  JSAMPARRAY image_ptr;
  register JSAMPROW data_ptr;
  JDIMENSION row;
  register JDIMENSION col;
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;

  /* Write the header and colormap */
  if (dest->is_os2)
    write_os2_header(cinfo, dest);
  else
    write_bmp_header(cinfo, dest);

  /* Write the file body from our virtual array */
  for (row = cinfo->output_height; row > 0; row--) {
    if (progress != NULL) {
      progress->pub.pass_counter = (long) (cinfo->output_height - row);
      progress->pub.pass_limit = (long) cinfo->output_height;
      (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
    }
    image_ptr = (*cinfo->mem->access_virt_sarray)
      ((j_common_ptr) cinfo, dest->whole_image, row-1, (JDIMENSION) 1, FALSE);
    data_ptr = image_ptr[0];
    for (col = dest->row_width; col > 0; col--) {
      putc(GETJSAMPLE(*data_ptr), outfile);
      data_ptr++;
    }
  }
  if (progress != NULL)
    progress->completed_extra_passes++;

  /* Make sure we wrote the output file OK */
  fflush(outfile);
  if (ferror(outfile))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * The module selection routine for BMP format output.
 */

GLOBAL(djpeg_dest_ptr)
jinit_write_bmp (j_decompress_ptr cinfo, boolean is_os2)
{
  bmp_dest_ptr dest;
  JDIMENSION row_width;

  /* Create module interface object, fill in method pointers */
  dest = (bmp_dest_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(bmp_dest_struct));
  dest->pub.start_output = start_output_bmp;
  dest->pub.finish_output = finish_output_bmp;
  dest->is_os2 = is_os2;

  if (cinfo->out_color_space == JCS_GRAYSCALE) {
    dest->pub.put_pixel_rows = put_gray_rows;
  } else if (cinfo->out_color_space == JCS_RGB) {
    if (cinfo->quantize_colors)
      dest->pub.put_pixel_rows = put_gray_rows;
    else
      dest->pub.put_pixel_rows = put_pixel_rows;
  } else {
    ERREXIT(cinfo, JERR_BMP_COLORSPACE);
  }

  /* Calculate output image dimensions so we can allocate space */
  jpeg_calc_output_dimensions(cinfo);

  /* Determine width of rows in the BMP file (padded to 4-byte boundary). */
  row_width = cinfo->output_width * cinfo->output_components;
  dest->data_width = row_width;
  while ((row_width & 3) != 0) row_width++;
  dest->row_width = row_width;
  dest->pad_bytes = (int) (row_width - dest->data_width);

  /* Allocate space for inversion array, prepare for write pass */
  dest->whole_image = (*cinfo->mem->request_virt_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
     row_width, cinfo->output_height, (JDIMENSION) 1);
  dest->cur_output_row = 0;
  if (cinfo->progress != NULL) {
    cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
    progress->total_extra_passes++; /* count file input as separate pass */
  }

  /* Create decompressor output buffer. */
  dest->pub.buffer = (*cinfo->mem->alloc_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, row_width, (JDIMENSION) 1);
  dest->pub.buffer_height = 1;

  return (djpeg_dest_ptr) dest;
}

#endif /* BMP_SUPPORTED */

--- NEW FILE: jpeglib.h ---
/*
 * jpeglib.h
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file defines the application interface for the JPEG library.
 * Most applications using the library need only include this file,
 * and perhaps jerror.h if they want to know the exact error codes.
 */

#ifndef JPEGLIB_H
#define JPEGLIB_H

/*
 * First we include the configuration files that record how this
 * installation of the JPEG library is set up.  jconfig.h can be
 * generated automatically for many systems.  jmorecfg.h contains
[...1057 lines suppressed...]
struct jpeg_upsampler { long dummy; };
struct jpeg_color_deconverter { long dummy; };
struct jpeg_color_quantizer { long dummy; };
#endif /* JPEG_INTERNALS */
#endif /* INCOMPLETE_TYPES_BROKEN */


/*
 * The JPEG library modules define JPEG_INTERNALS before including this file.
 * The internal structure declarations are read only when that is true.
 * Applications using the library should not include jpegint.h, but may wish
 * to include jerror.h.
 */

#ifdef JPEG_INTERNALS
#include "jpegint.h"		/* fetch private declarations */
#include "jerror.h"		/* fetch error codes too */
#endif

#endif /* JPEGLIB_H */

--- NEW FILE: jcparam.c ---
/*
 * jcparam.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains optional default-setting code for the JPEG compressor.
 * Applications do not have to use this file, but those that don't use it
 * must know a lot more about the innards of the JPEG code.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * Quantization table setup routines
 */

GLOBAL(void)
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
		      const unsigned int *basic_table,
		      int scale_factor, boolean force_baseline)
/* Define a quantization table equal to the basic_table times
 * a scale factor (given as a percentage).
 * If force_baseline is TRUE, the computed quantization table entries
 * are limited to 1..255 for JPEG baseline compatibility.
 */
{
  JQUANT_TBL ** qtblptr;
  int i;
  long temp;

  /* Safety check to ensure start_compress not called yet. */
  if (cinfo->global_state != CSTATE_START)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
    ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);

  qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];

  if (*qtblptr == NULL)
    *qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);

  for (i = 0; i < DCTSIZE2; i++) {
    temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
    /* limit the values to the valid range */
    if (temp <= 0L) temp = 1L;
    if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
    if (force_baseline && temp > 255L)
      temp = 255L;		/* limit to baseline range if requested */
    (*qtblptr)->quantval[i] = (UINT16) temp;
  }

  /* Initialize sent_table FALSE so table will be written to JPEG file. */
  (*qtblptr)->sent_table = FALSE;
}


GLOBAL(void)
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
			 boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables
 * and a straight percentage-scaling quality scale.  In most cases it's better
 * to use jpeg_set_quality (below); this entry point is provided for
 * applications that insist on a linear percentage scaling.
 */
{
  /* These are the sample quantization tables given in JPEG spec section K.1.
   * The spec says that the values given produce "good" quality, and
   * when divided by 2, "very good" quality.
   */
  static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
    16,  11,  10,  16,  24,  40,  51,  61,
    12,  12,  14,  19,  26,  58,  60,  55,
    14,  13,  16,  24,  40,  57,  69,  56,
    14,  17,  22,  29,  51,  87,  80,  62,
    18,  22,  37,  56,  68, 109, 103,  77,
    24,  35,  55,  64,  81, 104, 113,  92,
    49,  64,  78,  87, 103, 121, 120, 101,
    72,  92,  95,  98, 112, 100, 103,  99
  };
  static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
    17,  18,  24,  47,  99,  99,  99,  99,
    18,  21,  26,  66,  99,  99,  99,  99,
    24,  26,  56,  99,  99,  99,  99,  99,
    47,  66,  99,  99,  99,  99,  99,  99,
    99,  99,  99,  99,  99,  99,  99,  99,
    99,  99,  99,  99,  99,  99,  99,  99,
    99,  99,  99,  99,  99,  99,  99,  99,
    99,  99,  99,  99,  99,  99,  99,  99
  };

  /* Set up two quantization tables using the specified scaling */
  jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
		       scale_factor, force_baseline);
  jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
		       scale_factor, force_baseline);
}


GLOBAL(int)
jpeg_quality_scaling (int quality)
/* Convert a user-specified quality rating to a percentage scaling factor
 * for an underlying quantization table, using our recommended scaling curve.
 * The input 'quality' factor should be 0 (terrible) to 100 (very good).
 */
{
  /* Safety limit on quality factor.  Convert 0 to 1 to avoid zero divide. */
  if (quality <= 0) quality = 1;
  if (quality > 100) quality = 100;

  /* The basic table is used as-is (scaling 100) for a quality of 50.
   * Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
   * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
   * to make all the table entries 1 (hence, minimum quantization loss).
   * Qualities 1..50 are converted to scaling percentage 5000/Q.
   */
  if (quality < 50)
    quality = 5000 / quality;
  else
    quality = 200 - quality*2;

  return quality;
}


GLOBAL(void)
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
/* Set or change the 'quality' (quantization) setting, using default tables.
 * This is the standard quality-adjusting entry point for typical user
 * interfaces; only those who want detailed control over quantization tables
 * would use the preceding three routines directly.
 */
{
  /* Convert user 0-100 rating to percentage scaling */
  quality = jpeg_quality_scaling(quality);

  /* Set up standard quality tables */
  jpeg_set_linear_quality(cinfo, quality, force_baseline);
}


/*
 * Huffman table setup routines
 */

LOCAL(void)
add_huff_table (j_compress_ptr cinfo,
		JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
/* Define a Huffman table */
{
  int nsymbols, len;

  if (*htblptr == NULL)
    *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);

  /* Copy the number-of-symbols-of-each-code-length counts */
  MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));

  /* Validate the counts.  We do this here mainly so we can copy the right
   * number of symbols from the val[] array, without risking marching off
   * the end of memory.  jchuff.c will do a more thorough test later.
   */
  nsymbols = 0;
  for (len = 1; len <= 16; len++)
    nsymbols += bits[len];
  if (nsymbols < 1 || nsymbols > 256)
    ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);

  MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));

  /* Initialize sent_table FALSE so table will be written to JPEG file. */
  (*htblptr)->sent_table = FALSE;
}


LOCAL(void)
std_huff_tables (j_compress_ptr cinfo)
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
/* IMPORTANT: these are only valid for 8-bit data precision! */
{
  static const UINT8 bits_dc_luminance[17] =
    { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
  static const UINT8 val_dc_luminance[] =
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  
  static const UINT8 bits_dc_chrominance[17] =
    { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  static const UINT8 val_dc_chrominance[] =
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  
  static const UINT8 bits_ac_luminance[17] =
    { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
  static const UINT8 val_ac_luminance[] =
    { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
      0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
      0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
      0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
      0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
      0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
      0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
      0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
      0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
      0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
      0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
      0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
      0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
      0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
      0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
      0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
      0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
      0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
      0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
      0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
      0xf9, 0xfa };
  
  static const UINT8 bits_ac_chrominance[17] =
    { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
  static const UINT8 val_ac_chrominance[] =
    { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
      0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
      0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
      0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
      0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
      0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
      0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
      0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
      0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
      0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
      0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
      0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
      0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
      0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
      0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
      0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
      0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
      0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
      0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
      0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
      0xf9, 0xfa };
  
  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
		 bits_dc_luminance, val_dc_luminance);
  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
		 bits_ac_luminance, val_ac_luminance);
  add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
		 bits_dc_chrominance, val_dc_chrominance);
  add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
		 bits_ac_chrominance, val_ac_chrominance);
}


/*
 * Default parameter setup for compression.
 *
 * Applications that don't choose to use this routine must do their
 * own setup of all these parameters.  Alternately, you can call this
 * to establish defaults and then alter parameters selectively.  This
 * is the recommended approach since, if we add any new parameters,
 * your code will still work (they'll be set to reasonable defaults).
 */

GLOBAL(void)
jpeg_set_defaults (j_compress_ptr cinfo)
{
  int i;

  /* Safety check to ensure start_compress not called yet. */
  if (cinfo->global_state != CSTATE_START)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  /* Allocate comp_info array large enough for maximum component count.
   * Array is made permanent in case application wants to compress
   * multiple images at same param settings.
   */
  if (cinfo->comp_info == NULL)
    cinfo->comp_info = (jpeg_component_info *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
				  MAX_COMPONENTS * SIZEOF(jpeg_component_info));

  /* Initialize everything not dependent on the color space */

  cinfo->data_precision = BITS_IN_JSAMPLE;
  /* Set up two quantization tables using default quality of 75 */
  jpeg_set_quality(cinfo, 75, TRUE);
  /* Set up two Huffman tables */
  std_huff_tables(cinfo);

  /* Initialize default arithmetic coding conditioning */
  for (i = 0; i < NUM_ARITH_TBLS; i++) {
    cinfo->arith_dc_L[i] = 0;
    cinfo->arith_dc_U[i] = 1;
    cinfo->arith_ac_K[i] = 5;
  }

  /* Default is no multiple-scan output */
  cinfo->scan_info = NULL;
  cinfo->num_scans = 0;

  /* Expect normal source image, not raw downsampled data */
  cinfo->raw_data_in = FALSE;

  /* Use Huffman coding, not arithmetic coding, by default */
  cinfo->arith_code = FALSE;

  /* By default, don't do extra passes to optimize entropy coding */
  cinfo->optimize_coding = FALSE;
  /* The standard Huffman tables are only valid for 8-bit data precision.
   * If the precision is higher, force optimization on so that usable
   * tables will be computed.  This test can be removed if default tables
   * are supplied that are valid for the desired precision.
   */
  if (cinfo->data_precision > 8)
    cinfo->optimize_coding = TRUE;

  /* By default, use the simpler non-cosited sampling alignment */
  cinfo->CCIR601_sampling = FALSE;

  /* No input smoothing */
  cinfo->smoothing_factor = 0;

  /* DCT algorithm preference */
  cinfo->dct_method = JDCT_DEFAULT;

  /* No restart markers */
  cinfo->restart_interval = 0;
  cinfo->restart_in_rows = 0;

  /* Fill in default JFIF marker parameters.  Note that whether the marker
   * will actually be written is determined by jpeg_set_colorspace.
   *
   * By default, the library emits JFIF version code 1.01.
   * An application that wants to emit JFIF 1.02 extension markers should set
   * JFIF_minor_version to 2.  We could probably get away with just defaulting
   * to 1.02, but there may still be some decoders in use that will complain
   * about that; saying 1.01 should minimize compatibility problems.
   */
  cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
  cinfo->JFIF_minor_version = 1;
  cinfo->density_unit = 0;	/* Pixel size is unknown by default */
  cinfo->X_density = 1;		/* Pixel aspect ratio is square by default */
  cinfo->Y_density = 1;

  /* Choose JPEG colorspace based on input space, set defaults accordingly */

  jpeg_default_colorspace(cinfo);
}


/*
 * Select an appropriate JPEG colorspace for in_color_space.
 */

GLOBAL(void)
jpeg_default_colorspace (j_compress_ptr cinfo)
{
  switch (cinfo->in_color_space) {
  case JCS_GRAYSCALE:
    jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
    break;
  case JCS_RGB:
    jpeg_set_colorspace(cinfo, JCS_YCbCr);
    break;
  case JCS_YCbCr:
    jpeg_set_colorspace(cinfo, JCS_YCbCr);
    break;
  case JCS_CMYK:
    jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
    break;
  case JCS_YCCK:
    jpeg_set_colorspace(cinfo, JCS_YCCK);
    break;
  case JCS_UNKNOWN:
    jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
    break;
  default:
    ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
  }
}


/*
 * Set the JPEG colorspace, and choose colorspace-dependent default values.
 */

GLOBAL(void)
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
{
  jpeg_component_info * compptr;
  int ci;

#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl)  \
  (compptr = &cinfo->comp_info[index], \
   compptr->component_id = (id), \
   compptr->h_samp_factor = (hsamp), \
   compptr->v_samp_factor = (vsamp), \
   compptr->quant_tbl_no = (quant), \
   compptr->dc_tbl_no = (dctbl), \
   compptr->ac_tbl_no = (actbl) )

  /* Safety check to ensure start_compress not called yet. */
  if (cinfo->global_state != CSTATE_START)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  /* For all colorspaces, we use Q and Huff tables 0 for luminance components,
   * tables 1 for chrominance components.
   */

  cinfo->jpeg_color_space = colorspace;

  cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
  cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */

  switch (colorspace) {
  case JCS_GRAYSCALE:
    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
    cinfo->num_components = 1;
    /* JFIF specifies component ID 1 */
    SET_COMP(0, 1, 1,1, 0, 0,0);
    break;
  case JCS_RGB:
    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
    cinfo->num_components = 3;
    SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
    SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
    SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
    break;
  case JCS_YCbCr:
    cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
    cinfo->num_components = 3;
    /* JFIF specifies component IDs 1,2,3 */
    /* We default to 2x2 subsamples of chrominance */
    SET_COMP(0, 1, 2,2, 0, 0,0);
    SET_COMP(1, 2, 1,1, 1, 1,1);
    SET_COMP(2, 3, 1,1, 1, 1,1);
    break;
  case JCS_CMYK:
    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
    cinfo->num_components = 4;
    SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
    SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
    SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
    SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
    break;
  case JCS_YCCK:
    cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
    cinfo->num_components = 4;
    SET_COMP(0, 1, 2,2, 0, 0,0);
    SET_COMP(1, 2, 1,1, 1, 1,1);
    SET_COMP(2, 3, 1,1, 1, 1,1);
    SET_COMP(3, 4, 2,2, 0, 0,0);
    break;
  case JCS_UNKNOWN:
    cinfo->num_components = cinfo->input_components;
    if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
	       MAX_COMPONENTS);
    for (ci = 0; ci < cinfo->num_components; ci++) {
      SET_COMP(ci, ci, 1,1, 0, 0,0);
    }
    break;
  default:
    ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
  }
}


#ifdef C_PROGRESSIVE_SUPPORTED

LOCAL(jpeg_scan_info *)
fill_a_scan (jpeg_scan_info * scanptr, int ci,
	     int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for specified component */
{
  scanptr->comps_in_scan = 1;
  scanptr->component_index[0] = ci;
  scanptr->Ss = Ss;
  scanptr->Se = Se;
  scanptr->Ah = Ah;
  scanptr->Al = Al;
  scanptr++;
  return scanptr;
}

LOCAL(jpeg_scan_info *)
fill_scans (jpeg_scan_info * scanptr, int ncomps,
	    int Ss, int Se, int Ah, int Al)
/* Support routine: generate one scan for each component */
{
  int ci;

  for (ci = 0; ci < ncomps; ci++) {
    scanptr->comps_in_scan = 1;
    scanptr->component_index[0] = ci;
    scanptr->Ss = Ss;
    scanptr->Se = Se;
    scanptr->Ah = Ah;
    scanptr->Al = Al;
    scanptr++;
  }
  return scanptr;
}

LOCAL(jpeg_scan_info *)
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
/* Support routine: generate interleaved DC scan if possible, else N scans */
{
  int ci;

  if (ncomps <= MAX_COMPS_IN_SCAN) {
    /* Single interleaved DC scan */
    scanptr->comps_in_scan = ncomps;
    for (ci = 0; ci < ncomps; ci++)
      scanptr->component_index[ci] = ci;
    scanptr->Ss = scanptr->Se = 0;
    scanptr->Ah = Ah;
    scanptr->Al = Al;
    scanptr++;
  } else {
    /* Noninterleaved DC scan for each component */
    scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
  }
  return scanptr;
}


/*
 * Create a recommended progressive-JPEG script.
 * cinfo->num_components and cinfo->jpeg_color_space must be correct.
 */

GLOBAL(void)
jpeg_simple_progression (j_compress_ptr cinfo)
{
  int ncomps = cinfo->num_components;
  int nscans;
  jpeg_scan_info * scanptr;

  /* Safety check to ensure start_compress not called yet. */
  if (cinfo->global_state != CSTATE_START)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);

  /* Figure space needed for script.  Calculation must match code below! */
  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
    /* Custom script for YCbCr color images. */
    nscans = 10;
  } else {
    /* All-purpose script for other color spaces. */
    if (ncomps > MAX_COMPS_IN_SCAN)
      nscans = 6 * ncomps;	/* 2 DC + 4 AC scans per component */
    else
      nscans = 2 + 4 * ncomps;	/* 2 DC scans; 4 AC scans per component */
  }

  /* Allocate space for script.
   * We need to put it in the permanent pool in case the application performs
   * multiple compressions without changing the settings.  To avoid a memory
   * leak if jpeg_simple_progression is called repeatedly for the same JPEG
   * object, we try to re-use previously allocated space, and we allocate
   * enough space to handle YCbCr even if initially asked for grayscale.
   */
  if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
    cinfo->script_space_size = MAX(nscans, 10);
    cinfo->script_space = (jpeg_scan_info *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
			cinfo->script_space_size * SIZEOF(jpeg_scan_info));
  }
  scanptr = cinfo->script_space;
  cinfo->scan_info = scanptr;
  cinfo->num_scans = nscans;

  if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
    /* Custom script for YCbCr color images. */
    /* Initial DC scan */
    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
    /* Initial AC scan: get some luma data out in a hurry */
    scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
    /* Chroma data is too small to be worth expending many scans on */
    scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
    scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
    /* Complete spectral selection for luma AC */
    scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
    /* Refine next bit of luma AC */
    scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
    /* Finish DC successive approximation */
    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
    /* Finish AC successive approximation */
    scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
    scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
    /* Luma bottom bit comes last since it's usually largest scan */
    scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
  } else {
    /* All-purpose script for other color spaces. */
    /* Successive approximation first pass */
    scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
    scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
    scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
    /* Successive approximation second pass */
    scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
    /* Successive approximation final pass */
    scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
    scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
  }
}

#endif /* C_PROGRESSIVE_SUPPORTED */

--- NEW FILE: maktjpeg.st ---
; Project file for Independent JPEG Group's software
;
; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
; Thanks to Frank Moehle (Frank.Moehle at arbi.informatik.uni-oldenburg.de),
; Dr. B. Setzepfandt (bernd at gina.uni-muenster.de),
; and Guido Vollbeding (guivol at esc.de).
;
; To use this file, rename it to jpegtran.prj.
; If you are using Turbo C, change filenames beginning with "pc..." to "tc..."
; Read installation instructions before trying to make the program!
;
;
;      * * * Output file * * *
jpegtran.ttp
;
; * * * COMPILER OPTIONS * * *  
.C[-P]        ; absolute calls
.C[-M]        ; and no string merging, folks
.C[-w-cln]    ; no "constant is long" warnings
.C[-w-par]    ; no "parameter xxxx unused"
.C[-w-rch]    ; no "unreachable code"
.C[-wsig]     ; warn if significant digits may be lost
=
; * * * * List of modules * * * * 
pcstart.o
jpegtran.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h,transupp.h,jversion.h)
cdjpeg.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
rdswitch.c	(cdjpeg.h,jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h,cderror.h)
transupp.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,transupp.h)
libjpeg.lib        ; built by libjpeg.prj
pcstdlib.lib       ; standard library
pcextlib.lib       ; extended library

--- NEW FILE: jdatadst.c ---
/*
 * jdatadst.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains compression data destination routines for the case of
 * emitting JPEG data to a file (or any stdio stream).  While these routines
 * are sufficient for most applications, some will want to use a different
 * destination manager.
 * IMPORTANT: we assume that fwrite() will correctly transcribe an array of
 * JOCTETs into 8-bit-wide elements on external storage.  If char is wider
 * than 8 bits on your machine, you may need to do some tweaking.
 */

/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jerror.h"


/* Expanded data destination object for stdio output */

typedef struct {
  struct jpeg_destination_mgr pub; /* public fields */

  FILE * outfile;		/* target stream */
  JOCTET * buffer;		/* start of buffer */
} my_destination_mgr;

typedef my_destination_mgr * my_dest_ptr;

#define OUTPUT_BUF_SIZE  4096	/* choose an efficiently fwrite'able size */


/*
 * Initialize destination --- called by jpeg_start_compress
 * before any data is actually written.
 */

METHODDEF(void)
init_destination (j_compress_ptr cinfo)
{
  my_dest_ptr dest = (my_dest_ptr) cinfo->dest;

  /* Allocate the output buffer --- it will be released when done with image */
  dest->buffer = (JOCTET *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  OUTPUT_BUF_SIZE * SIZEOF(JOCTET));

  dest->pub.next_output_byte = dest->buffer;
  dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;
}


/*
 * Empty the output buffer --- called whenever buffer fills up.
 *
 * In typical applications, this should write the entire output buffer
 * (ignoring the current state of next_output_byte & free_in_buffer),
 * reset the pointer & count to the start of the buffer, and return TRUE
 * indicating that the buffer has been dumped.
 *
 * In applications that need to be able to suspend compression due to output
 * overrun, a FALSE return indicates that the buffer cannot be emptied now.
 * In this situation, the compressor will return to its caller (possibly with
 * an indication that it has not accepted all the supplied scanlines).  The
 * application should resume compression after it has made more room in the
 * output buffer.  Note that there are substantial restrictions on the use of
 * suspension --- see the documentation.
 *
 * When suspending, the compressor will back up to a convenient restart point
 * (typically the start of the current MCU). next_output_byte & free_in_buffer
 * indicate where the restart point will be if the current call returns FALSE.
 * Data beyond this point will be regenerated after resumption, so do not
 * write it out when emptying the buffer externally.
 */

METHODDEF(boolean)
empty_output_buffer (j_compress_ptr cinfo)
{
  my_dest_ptr dest = (my_dest_ptr) cinfo->dest;

  if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) !=
      (size_t) OUTPUT_BUF_SIZE)
    ERREXIT(cinfo, JERR_FILE_WRITE);

  dest->pub.next_output_byte = dest->buffer;
  dest->pub.free_in_buffer = OUTPUT_BUF_SIZE;

  return TRUE;
}


/*
 * Terminate destination --- called by jpeg_finish_compress
 * after all data has been written.  Usually needs to flush buffer.
 *
 * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
 * application must deal with any cleanup that should happen even
 * for error exit.
 */

METHODDEF(void)
term_destination (j_compress_ptr cinfo)
{
  my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
  size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer;

  /* Write any data remaining in the buffer */
  if (datacount > 0) {
    if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount)
      ERREXIT(cinfo, JERR_FILE_WRITE);
  }
  fflush(dest->outfile);
  /* Make sure we wrote the output file OK */
  if (ferror(dest->outfile))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * Prepare for output to a stdio stream.
 * The caller must have already opened the stream, and is responsible
 * for closing it after finishing compression.
 */

GLOBAL(void)
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)
{
  my_dest_ptr dest;

  /* The destination object is made permanent so that multiple JPEG images
   * can be written to the same file without re-executing jpeg_stdio_dest.
   * This makes it dangerous to use this manager and a different destination
   * manager serially with the same JPEG object, because their private object
   * sizes may be different.  Caveat programmer.
   */
  if (cinfo->dest == NULL) {	/* first time for this JPEG object? */
    cinfo->dest = (struct jpeg_destination_mgr *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
				  SIZEOF(my_destination_mgr));
  }

  dest = (my_dest_ptr) cinfo->dest;
  dest->pub.init_destination = init_destination;
  dest->pub.empty_output_buffer = empty_output_buffer;
  dest->pub.term_destination = term_destination;
  dest->outfile = outfile;
}

--- NEW FILE: jmorecfg.h ---
/*
 * jmorecfg.h
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains additional configuration options that customize the
 * JPEG software for special applications or support machine-dependent
 * optimizations.  Most users will not need to touch this file.
 */


/*
 * Define BITS_IN_JSAMPLE as either
 *   8   for 8-bit sample values (the usual setting)
 *   12  for 12-bit sample values
 * Only 8 and 12 are legal data precisions for lossy JPEG according to the
 * JPEG standard, and the IJG code does not support anything else!
 * We do not support run-time selection of data precision, sorry.
 */

#define BITS_IN_JSAMPLE  8	/* use 8 or 12 */


/*
 * Maximum number of components (color channels) allowed in JPEG image.
 * To meet the letter of the JPEG spec, set this to 255.  However, darn
 * few applications need more than 4 channels (maybe 5 for CMYK + alpha
 * mask).  We recommend 10 as a reasonable compromise; use 4 if you are
 * really short on memory.  (Each allowed component costs a hundred or so
 * bytes of storage, whether actually used in an image or not.)
 */

#define MAX_COMPONENTS  10	/* maximum number of image components */


/*
 * Basic data types.
 * You may need to change these if you have a machine with unusual data
 * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
 * or "long" not 32 bits.  We don't care whether "int" is 16 or 32 bits,
 * but it had better be at least 16.
 */

/* Representation of a single sample (pixel element value).
 * We frequently allocate large arrays of these, so it's important to keep
 * them small.  But if you have memory to burn and access to char or short
 * arrays is very slow on your hardware, you might want to change these.
 */

#if BITS_IN_JSAMPLE == 8
/* JSAMPLE should be the smallest type that will hold the values 0..255.
 * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
 */

#ifdef HAVE_UNSIGNED_CHAR

typedef unsigned char JSAMPLE;
#define GETJSAMPLE(value)  ((int) (value))

#else /* not HAVE_UNSIGNED_CHAR */

typedef char JSAMPLE;
#ifdef CHAR_IS_UNSIGNED
#define GETJSAMPLE(value)  ((int) (value))
#else
#define GETJSAMPLE(value)  ((int) (value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */

#endif /* HAVE_UNSIGNED_CHAR */

#define MAXJSAMPLE	255
#define CENTERJSAMPLE	128

#endif /* BITS_IN_JSAMPLE == 8 */


#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
 * On nearly all machines "short" will do nicely.
 */

typedef short JSAMPLE;
#define GETJSAMPLE(value)  ((int) (value))

#define MAXJSAMPLE	4095
#define CENTERJSAMPLE	2048

#endif /* BITS_IN_JSAMPLE == 12 */


/* Representation of a DCT frequency coefficient.
 * This should be a signed value of at least 16 bits; "short" is usually OK.
 * Again, we allocate large arrays of these, but you can change to int
 * if you have memory to burn and "short" is really slow.
 */

typedef short JCOEF;


/* Compressed datastreams are represented as arrays of JOCTET.
 * These must be EXACTLY 8 bits wide, at least once they are written to
 * external storage.  Note that when using the stdio data source/destination
 * managers, this is also the data type passed to fread/fwrite.
 */

#ifdef HAVE_UNSIGNED_CHAR

typedef unsigned char JOCTET;
#define GETJOCTET(value)  (value)

#else /* not HAVE_UNSIGNED_CHAR */

typedef char JOCTET;
#ifdef CHAR_IS_UNSIGNED
#define GETJOCTET(value)  (value)
#else
#define GETJOCTET(value)  ((value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */

#endif /* HAVE_UNSIGNED_CHAR */


/* These typedefs are used for various table entries and so forth.
 * They must be at least as wide as specified; but making them too big
 * won't cost a huge amount of memory, so we don't provide special
 * extraction code like we did for JSAMPLE.  (In other words, these
 * typedefs live at a different point on the speed/space tradeoff curve.)
 */

/* UINT8 must hold at least the values 0..255. */

#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char UINT8;
#else /* not HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char UINT8;
#else /* not CHAR_IS_UNSIGNED */
typedef short UINT8;
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */

/* UINT16 must hold at least the values 0..65535. */

#ifdef HAVE_UNSIGNED_SHORT
typedef unsigned short UINT16;
#else /* not HAVE_UNSIGNED_SHORT */
typedef unsigned int UINT16;
#endif /* HAVE_UNSIGNED_SHORT */

/* INT16 must hold at least the values -32768..32767. */

#ifndef XMD_H			/* X11/xmd.h correctly defines INT16 */
typedef short INT16;
#endif

/* INT32 must hold at least signed 32-bit values. */

#ifndef XMD_H			/* X11/xmd.h correctly defines INT32 */
typedef long INT32;
#endif

/* Datatype used for image dimensions.  The JPEG standard only supports
 * images up to 64K*64K due to 16-bit fields in SOF markers.  Therefore
 * "unsigned int" is sufficient on all machines.  However, if you need to
 * handle larger images and you don't mind deviating from the spec, you
 * can change this datatype.
 */

typedef unsigned int JDIMENSION;

#define JPEG_MAX_DIMENSION  65500L  /* a tad under 64K to prevent overflows */


/* These macros are used in all function definitions and extern declarations.
 * You could modify them if you need to change function linkage conventions;
 * in particular, you'll need to do that to make the library a Windows DLL.
 * Another application is to make all functions global for use with debuggers
 * or code profilers that require it.
 */

/* a function called through method pointers: */
#define METHODDEF(type)		static type
/* a function used only in its module: */
#define LOCAL(type)		static type
/* a function referenced thru EXTERNs: */
#define GLOBAL(type)		type
/* a reference to a GLOBAL function: */
#define EXTERN(type)		extern type


/* This macro is used to declare a "method", that is, a function pointer.
 * We want to supply prototype parameters if the compiler can cope.
 * Note that the arglist parameter must be parenthesized!
 * Again, you can customize this if you need special linkage keywords.
 */

#ifdef HAVE_PROTOTYPES
#define JMETHOD(type,methodname,arglist)  type (*methodname) arglist
#else
#define JMETHOD(type,methodname,arglist)  type (*methodname) ()
#endif


/* Here is the pseudo-keyword for declaring pointers that must be "far"
 * on 80x86 machines.  Most of the specialized coding for 80x86 is handled
 * by just saying "FAR *" where such a pointer is needed.  In a few places
 * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
 */

#ifdef NEED_FAR_POINTERS
#define FAR  far
#else
#define FAR
#endif


/*
 * On a few systems, type boolean and/or its values FALSE, TRUE may appear
 * in standard header files.  Or you may have conflicts with application-
 * specific header files that you want to include together with these files.
 * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
 */

#ifndef HAVE_BOOLEAN
typedef int boolean;
#endif
#ifndef FALSE			/* in case these macros already exist */
#define FALSE	0		/* values of boolean */
#endif
#ifndef TRUE
#define TRUE	1
#endif


/*
 * The remaining options affect code selection within the JPEG library,
 * but they don't need to be visible to most applications using the library.
 * To minimize application namespace pollution, the symbols won't be
 * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
 */

#ifdef JPEG_INTERNALS
#define JPEG_INTERNAL_OPTIONS
#endif

#ifdef JPEG_INTERNAL_OPTIONS


/*
 * These defines indicate whether to include various optional functions.
 * Undefining some of these symbols will produce a smaller but less capable
 * library.  Note that you can leave certain source files out of the
 * compilation/linking process if you've #undef'd the corresponding symbols.
 * (You may HAVE to do that if your compiler doesn't like null source files.)
 */

/* Arithmetic coding is unsupported for legal reasons.  Complaints to IBM. */

/* Capability options common to encoder and decoder: */

#define DCT_ISLOW_SUPPORTED	/* slow but accurate integer algorithm */
#define DCT_IFAST_SUPPORTED	/* faster, less accurate integer method */
#define DCT_FLOAT_SUPPORTED	/* floating-point: accurate, fast on fast HW */

/* Encoder capability options: */

#undef  C_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define C_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
#define ENTROPY_OPT_SUPPORTED	    /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
 * ENTROPY_OPT_SUPPORTED.  The standard Huffman tables are only good for 8-bit
 * precision, so jchuff.c normally uses entropy optimization to compute
 * usable tables for higher precision.  If you don't want to do optimization,
 * you'll have to supply different default Huffman tables.
 * The exact same statements apply for progressive JPEG: the default tables
 * don't work for progressive mode.  (This may get fixed, however.)
 */
#define INPUT_SMOOTHING_SUPPORTED   /* Input image smoothing option? */

/* Decoder capability options: */

#undef  D_ARITH_CODING_SUPPORTED    /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED	    /* Progressive JPEG? (Requires MULTISCAN)*/
#define SAVE_MARKERS_SUPPORTED	    /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED   /* Block smoothing? (Progressive only) */
#define IDCT_SCALING_SUPPORTED	    /* Output rescaling via IDCT? */
#undef  UPSAMPLE_SCALING_SUPPORTED  /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED  /* Fast path for sloppy upsampling? */
#define QUANT_1PASS_SUPPORTED	    /* 1-pass color quantization? */
#define QUANT_2PASS_SUPPORTED	    /* 2-pass color quantization? */

/* more capability options later, no doubt */


/*
 * Ordering of RGB data in scanlines passed to or from the application.
 * If your application wants to deal with data in the order B,G,R, just
 * change these macros.  You can also deal with formats such as R,G,B,X
 * (one extra byte per pixel) by changing RGB_PIXELSIZE.  Note that changing
 * the offsets will also change the order in which colormap data is organized.
 * RESTRICTIONS:
 * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
 * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
 *    useful if you are using JPEG color spaces other than YCbCr or grayscale.
 * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
 *    is not 3 (they don't understand about dummy color components!).  So you
 *    can't use color quantization if you change that value.
 */

#define RGB_RED		0	/* Offset of Red in an RGB scanline element */
#define RGB_GREEN	1	/* Offset of Green */
#define RGB_BLUE	2	/* Offset of Blue */
#define RGB_PIXELSIZE	3	/* JSAMPLEs per RGB scanline element */


/* Definitions for speed-related optimizations. */


/* If your compiler supports inline functions, define INLINE
 * as the inline keyword; otherwise define it as empty.
 */

#ifndef INLINE
#ifdef __GNUC__			/* for instance, GNU C knows about inline */
#define INLINE __inline__
#endif
#ifndef INLINE
#define INLINE			/* default is to define it as empty */
#endif
#endif


/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
 * two 16-bit shorts is faster than multiplying two ints.  Define MULTIPLIER
 * as short on such a machine.  MULTIPLIER must be at least 16 bits wide.
 */

#ifndef MULTIPLIER
#define MULTIPLIER  int		/* type for fastest integer multiply */
#endif


/* FAST_FLOAT should be either float or double, whichever is done faster
 * by your compiler.  (Note that this type is only used in the floating point
 * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
 * Typically, float is faster in ANSI C compilers, while double is faster in
 * pre-ANSI compilers (because they insist on converting to double anyway).
 * The code below therefore chooses float if we have ANSI-style prototypes.
 */

#ifndef FAST_FLOAT
#ifdef HAVE_PROTOTYPES
#define FAST_FLOAT  float
#else
#define FAST_FLOAT  double
#endif
#endif

#endif /* JPEG_INTERNAL_OPTIONS */

--- NEW FILE: jconfig.dj ---
/* jconfig.dj --- jconfig.h for DJGPP (Delorie's GNU C port) on MS-DOS. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS	/* DJGPP uses flat 32-bit addressing */
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#undef TWO_FILE_COMMANDLINE	/* optional */
#define USE_SETMODE		/* Needed to make one-file style work in DJGPP */
#undef NEED_SIGNAL_CATCHER	/* Define this if you use jmemname.c */
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: configure ---
#! /bin/sh

# Guess values for system-dependent variables and create Makefiles.
# Generated automatically using autoconf version 2.12 
# Copyright (C) 1992, 93, 94, 95, 96 Free Software Foundation, Inc.
#
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.

# Defaults:
ac_help=
ac_default_prefix=/usr/local
# Any additions from configure.in:
ac_help="$ac_help
  --enable-shared         build shared library using GNU libtool"
ac_help="$ac_help
  --enable-static         build static library using GNU libtool"
ac_help="$ac_help
  --enable-maxmem[=N]     enable use of temp files, set max mem usage to N MB"
[...1972 lines suppressed...]
      # The file is in a subdirectory.
      test ! -d "$ac_dir" && mkdir "$ac_dir"
    fi
    rm -f $ac_file
    mv conftest.h $ac_file
  fi
fi; done

EOF
cat >> $CONFIG_STATUS <<EOF

EOF
cat >> $CONFIG_STATUS <<\EOF

exit 0
EOF
chmod +x $CONFIG_STATUS
rm -fr confdefs* $ac_clean_files
test "$no_create" = yes || ${CONFIG_SHELL-/bin/sh} $CONFIG_STATUS || exit 1


--- NEW FILE: jconfig.mac ---
/* jconfig.mac --- jconfig.h for CodeWarrior on Apple Macintosh */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#define USE_MAC_MEMMGR		/* Define this if you use jmemmac.c */

#define ALIGN_TYPE long		/* Needed for 680x0 Macs */

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define USE_CCOMMAND		/* Command line reader for Macintosh */
#define TWO_FILE_COMMANDLINE	/* Binary I/O thru stdin/stdout doesn't work */

#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: makefile.vms ---
$! Makefile for Independent JPEG Group's software
$!
$! This is a command procedure for Digital VMS systems that do not have MMS.
$! It builds the JPEG software by brute force, recompiling everything whether
$! or not it is necessary.  It then runs the basic self-test.
$! Thanks to Rick Dyson (dyson at iowasp.physics.uiowa.edu)
$! and Tim Bell (tbell at netcom.com) for their help.
$!
$! Read installation instructions before running this!!
$!
$ If F$Mode () .eqs. "INTERACTIVE"
$   Then
$       VERIFY = F$Verify (0)
$   Else
$       VERIFY = F$Verify (1)
$ EndIf
$ On Control_Y Then GoTo End
$ On Error     Then GoTo End
$
$ If F$GetSyi ("HW_MODEL") .gt. 1023 
$   Then
$       OPT = ""
$   Else
$       OPT = ",Sys$Disk:[]makvms.opt/Option"
$ EndIf
$ 
$ DoCompile := CC /NoDebug /Optimize /NoList
$!
$ DoCompile jcapimin.c
$ DoCompile jcapistd.c
$ DoCompile jctrans.c
$ DoCompile jcparam.c
$ DoCompile jdatadst.c
$ DoCompile jcinit.c
$ DoCompile jcmaster.c
$ DoCompile jcmarker.c
$ DoCompile jcmainct.c
$ DoCompile jcprepct.c
$ DoCompile jccoefct.c
$ DoCompile jccolor.c
$ DoCompile jcsample.c
$ DoCompile jchuff.c
$ DoCompile jcphuff.c
$ DoCompile jcdctmgr.c
$ DoCompile jfdctfst.c
$ DoCompile jfdctflt.c
$ DoCompile jfdctint.c
$ DoCompile jdapimin.c
$ DoCompile jdapistd.c
$ DoCompile jdtrans.c
$ DoCompile jdatasrc.c
$ DoCompile jdmaster.c
$ DoCompile jdinput.c
$ DoCompile jdmarker.c
$ DoCompile jdhuff.c
$ DoCompile jdphuff.c
$ DoCompile jdmainct.c
$ DoCompile jdcoefct.c
$ DoCompile jdpostct.c
$ DoCompile jddctmgr.c
$ DoCompile jidctfst.c
$ DoCompile jidctflt.c
$ DoCompile jidctint.c
$ DoCompile jidctred.c
$ DoCompile jdsample.c
$ DoCompile jdcolor.c
$ DoCompile jquant1.c
$ DoCompile jquant2.c
$ DoCompile jdmerge.c
$ DoCompile jcomapi.c
$ DoCompile jutils.c
$ DoCompile jerror.c
$ DoCompile jmemmgr.c
$ DoCompile jmemnobs.c
$!
$ Library /Create libjpeg.olb  jcapimin.obj,jcapistd.obj,jctrans.obj, -
          jcparam.obj,jdatadst.obj,jcinit.obj,jcmaster.obj,jcmarker.obj, -
          jcmainct.obj,jcprepct.obj,jccoefct.obj,jccolor.obj,jcsample.obj, -
          jchuff.obj,jcphuff.obj,jcdctmgr.obj,jfdctfst.obj,jfdctflt.obj, -
          jfdctint.obj,jdapimin.obj,jdapistd.obj,jdtrans.obj,jdatasrc.obj, -
          jdmaster.obj,jdinput.obj,jdmarker.obj,jdhuff.obj,jdphuff.obj, -
          jdmainct.obj,jdcoefct.obj,jdpostct.obj,jddctmgr.obj,jidctfst.obj, -
          jidctflt.obj,jidctint.obj,jidctred.obj,jdsample.obj,jdcolor.obj, -
          jquant1.obj,jquant2.obj,jdmerge.obj,jcomapi.obj,jutils.obj, -
          jerror.obj,jmemmgr.obj,jmemnobs.obj
$!
$ DoCompile cjpeg.c
$ DoCompile rdppm.c
$ DoCompile rdgif.c
$ DoCompile rdtarga.c
$ DoCompile rdrle.c
$ DoCompile rdbmp.c
$ DoCompile rdswitch.c
$ DoCompile cdjpeg.c
$!
$ Link /NoMap /Executable = cjpeg.exe  cjpeg.obj,rdppm.obj,rdgif.obj, -
          rdtarga.obj,rdrle.obj,rdbmp.obj,rdswitch.obj,cdjpeg.obj,libjpeg.olb/Library'OPT'
$!
$ DoCompile djpeg.c
$ DoCompile wrppm.c
$ DoCompile wrgif.c
$ DoCompile wrtarga.c
$ DoCompile wrrle.c
$ DoCompile wrbmp.c
$ DoCompile rdcolmap.c
$ DoCompile cdjpeg.c
$!
$ Link /NoMap /Executable = djpeg.exe  djpeg.obj,wrppm.obj,wrgif.obj, -
          wrtarga.obj,wrrle.obj,wrbmp.obj,rdcolmap.obj,cdjpeg.obj,libjpeg.olb/Library'OPT'
$!
$ DoCompile jpegtran.c
$ DoCompile rdswitch.c
$ DoCompile cdjpeg.c
$ DoCompile transupp.c
$!
$ Link /NoMap /Executable = jpegtran.exe  jpegtran.obj,rdswitch.obj, -
          cdjpeg.obj,transupp.obj,libjpeg.olb/Library'OPT'
$!
$ DoCompile rdjpgcom.c
$ Link /NoMap /Executable = rdjpgcom.exe  rdjpgcom.obj'OPT'
$!
$ DoCompile wrjpgcom.c
$ Link /NoMap /Executable = wrjpgcom.exe  wrjpgcom.obj'OPT'
$!
$! Run the self-test
$!
$ mcr sys$disk:[]djpeg -dct int -ppm -outfile testout.ppm testorig.jpg
$ mcr sys$disk:[]djpeg -dct int -bmp -colors 256 -outfile testout.bmp testorig.jpg
$ mcr sys$disk:[]cjpeg -dct int      -outfile testout.jpg testimg.ppm
$ mcr sys$disk:[]djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
$ mcr sys$disk:[]cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
$ mcr sys$disk:[]jpegtran -outfile testoutt.jpg testprog.jpg
$ Backup /Compare/Log testimg.ppm testout.ppm
$ Backup /Compare/Log testimg.bmp testout.bmp
$ Backup /Compare/Log testimg.jpg testout.jpg
$ Backup /Compare/Log testimg.ppm testoutp.ppm
$ Backup /Compare/Log testimgp.jpg testoutp.jpg
$ Backup /Compare/Log testorig.jpg testoutt.jpg
$!
$End:
$   If Verify Then Set Verify
$ Exit

--- NEW FILE: wrgif.c ---
/*
 * wrgif.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to write output images in GIF format.
 *
 **************************************************************************
 * NOTE: to avoid entanglements with Unisys' patent on LZW compression,   *
 * this code has been modified to output "uncompressed GIF" files.        *
 * There is no trace of the LZW algorithm in this file.                   *
 **************************************************************************
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume output to
 * an ordinary stdio stream.
 */

/*
 * This code is loosely based on ppmtogif from the PBMPLUS distribution
 * of Feb. 1991.  That file contains the following copyright notice:
 *    Based on GIFENCODE by David Rowley <mgardi at watdscu.waterloo.edu>.
 *    Lempel-Ziv compression based on "compress" by Spencer W. Thomas et al.
 *    Copyright (C) 1989 by Jef Poskanzer.
 *    Permission to use, copy, modify, and distribute this software and its
 *    documentation for any purpose and without fee is hereby granted, provided
 *    that the above copyright notice appear in all copies and that both that
 *    copyright notice and this permission notice appear in supporting
 *    documentation.  This software is provided "as is" without express or
 *    implied warranty.
 *
 * We are also required to state that
 *    "The Graphics Interchange Format(c) is the Copyright property of
 *    CompuServe Incorporated. GIF(sm) is a Service Mark property of
 *    CompuServe Incorporated."
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef GIF_SUPPORTED


/* Private version of data destination object */

typedef struct {
  struct djpeg_dest_struct pub;	/* public fields */

  j_decompress_ptr cinfo;	/* back link saves passing separate parm */

  /* State for packing variable-width codes into a bitstream */
  int n_bits;			/* current number of bits/code */
  int maxcode;			/* maximum code, given n_bits */
  INT32 cur_accum;		/* holds bits not yet output */
  int cur_bits;			/* # of bits in cur_accum */

  /* State for GIF code assignment */
  int ClearCode;		/* clear code (doesn't change) */
  int EOFCode;			/* EOF code (ditto) */
  int code_counter;		/* counts output symbols */

  /* GIF data packet construction buffer */
  int bytesinpkt;		/* # of bytes in current packet */
  char packetbuf[256];		/* workspace for accumulating packet */

} gif_dest_struct;

typedef gif_dest_struct * gif_dest_ptr;

/* Largest value that will fit in N bits */
#define MAXCODE(n_bits)	((1 << (n_bits)) - 1)


/*
 * Routines to package finished data bytes into GIF data blocks.
 * A data block consists of a count byte (1..255) and that many data bytes.
 */

LOCAL(void)
flush_packet (gif_dest_ptr dinfo)
/* flush any accumulated data */
{
  if (dinfo->bytesinpkt > 0) {	/* never write zero-length packet */
    dinfo->packetbuf[0] = (char) dinfo->bytesinpkt++;
    if (JFWRITE(dinfo->pub.output_file, dinfo->packetbuf, dinfo->bytesinpkt)
	!= (size_t) dinfo->bytesinpkt)
      ERREXIT(dinfo->cinfo, JERR_FILE_WRITE);
    dinfo->bytesinpkt = 0;
  }
}


/* Add a character to current packet; flush to disk if necessary */
#define CHAR_OUT(dinfo,c)  \
	{ (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (c);  \
	    if ((dinfo)->bytesinpkt >= 255)  \
	      flush_packet(dinfo);  \
	}


/* Routine to convert variable-width codes into a byte stream */

LOCAL(void)
output (gif_dest_ptr dinfo, int code)
/* Emit a code of n_bits bits */
/* Uses cur_accum and cur_bits to reblock into 8-bit bytes */
{
  dinfo->cur_accum |= ((INT32) code) << dinfo->cur_bits;
  dinfo->cur_bits += dinfo->n_bits;

  while (dinfo->cur_bits >= 8) {
    CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF);
    dinfo->cur_accum >>= 8;
    dinfo->cur_bits -= 8;
  }
}


/* The pseudo-compression algorithm.
 *
 * In this module we simply output each pixel value as a separate symbol;
 * thus, no compression occurs.  In fact, there is expansion of one bit per
 * pixel, because we use a symbol width one bit wider than the pixel width.
 *
 * GIF ordinarily uses variable-width symbols, and the decoder will expect
 * to ratchet up the symbol width after a fixed number of symbols.
 * To simplify the logic and keep the expansion penalty down, we emit a
 * GIF Clear code to reset the decoder just before the width would ratchet up.
 * Thus, all the symbols in the output file will have the same bit width.
 * Note that emitting the Clear codes at the right times is a mere matter of
 * counting output symbols and is in no way dependent on the LZW patent.
 *
 * With a small basic pixel width (low color count), Clear codes will be
 * needed very frequently, causing the file to expand even more.  So this
 * simplistic approach wouldn't work too well on bilevel images, for example.
 * But for output of JPEG conversions the pixel width will usually be 8 bits
 * (129 to 256 colors), so the overhead added by Clear symbols is only about
 * one symbol in every 256.
 */

LOCAL(void)
compress_init (gif_dest_ptr dinfo, int i_bits)
/* Initialize pseudo-compressor */
{
  /* init all the state variables */
  dinfo->n_bits = i_bits;
  dinfo->maxcode = MAXCODE(dinfo->n_bits);
  dinfo->ClearCode = (1 << (i_bits - 1));
  dinfo->EOFCode = dinfo->ClearCode + 1;
  dinfo->code_counter = dinfo->ClearCode + 2;
  /* init output buffering vars */
  dinfo->bytesinpkt = 0;
  dinfo->cur_accum = 0;
  dinfo->cur_bits = 0;
  /* GIF specifies an initial Clear code */
  output(dinfo, dinfo->ClearCode);
}


LOCAL(void)
compress_pixel (gif_dest_ptr dinfo, int c)
/* Accept and "compress" one pixel value.
 * The given value must be less than n_bits wide.
 */
{
  /* Output the given pixel value as a symbol. */
  output(dinfo, c);
  /* Issue Clear codes often enough to keep the reader from ratcheting up
   * its symbol size.
   */
  if (dinfo->code_counter < dinfo->maxcode) {
    dinfo->code_counter++;
  } else {
    output(dinfo, dinfo->ClearCode);
    dinfo->code_counter = dinfo->ClearCode + 2;	/* reset the counter */
  }
}


LOCAL(void)
compress_term (gif_dest_ptr dinfo)
/* Clean up at end */
{
  /* Send an EOF code */
  output(dinfo, dinfo->EOFCode);
  /* Flush the bit-packing buffer */
  if (dinfo->cur_bits > 0) {
    CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF);
  }
  /* Flush the packet buffer */
  flush_packet(dinfo);
}


/* GIF header construction */


LOCAL(void)
put_word (gif_dest_ptr dinfo, unsigned int w)
/* Emit a 16-bit word, LSB first */
{
  putc(w & 0xFF, dinfo->pub.output_file);
  putc((w >> 8) & 0xFF, dinfo->pub.output_file);
}


LOCAL(void)
put_3bytes (gif_dest_ptr dinfo, int val)
/* Emit 3 copies of same byte value --- handy subr for colormap construction */
{
  putc(val, dinfo->pub.output_file);
  putc(val, dinfo->pub.output_file);
  putc(val, dinfo->pub.output_file);
}


LOCAL(void)
emit_header (gif_dest_ptr dinfo, int num_colors, JSAMPARRAY colormap)
/* Output the GIF file header, including color map */
/* If colormap==NULL, synthesize a gray-scale colormap */
{
  int BitsPerPixel, ColorMapSize, InitCodeSize, FlagByte;
  int cshift = dinfo->cinfo->data_precision - 8;
  int i;

  if (num_colors > 256)
    ERREXIT1(dinfo->cinfo, JERR_TOO_MANY_COLORS, num_colors);
  /* Compute bits/pixel and related values */
  BitsPerPixel = 1;
  while (num_colors > (1 << BitsPerPixel))
    BitsPerPixel++;
  ColorMapSize = 1 << BitsPerPixel;
  if (BitsPerPixel <= 1)
    InitCodeSize = 2;
  else
    InitCodeSize = BitsPerPixel;
  /*
   * Write the GIF header.
   * Note that we generate a plain GIF87 header for maximum compatibility.
   */
  putc('G', dinfo->pub.output_file);
  putc('I', dinfo->pub.output_file);
  putc('F', dinfo->pub.output_file);
  putc('8', dinfo->pub.output_file);
  putc('7', dinfo->pub.output_file);
  putc('a', dinfo->pub.output_file);
  /* Write the Logical Screen Descriptor */
  put_word(dinfo, (unsigned int) dinfo->cinfo->output_width);
  put_word(dinfo, (unsigned int) dinfo->cinfo->output_height);
  FlagByte = 0x80;		/* Yes, there is a global color table */
  FlagByte |= (BitsPerPixel-1) << 4; /* color resolution */
  FlagByte |= (BitsPerPixel-1);	/* size of global color table */
  putc(FlagByte, dinfo->pub.output_file);
  putc(0, dinfo->pub.output_file); /* Background color index */
  putc(0, dinfo->pub.output_file); /* Reserved (aspect ratio in GIF89) */
  /* Write the Global Color Map */
  /* If the color map is more than 8 bits precision, */
  /* we reduce it to 8 bits by shifting */
  for (i=0; i < ColorMapSize; i++) {
    if (i < num_colors) {
      if (colormap != NULL) {
	if (dinfo->cinfo->out_color_space == JCS_RGB) {
	  /* Normal case: RGB color map */
	  putc(GETJSAMPLE(colormap[0][i]) >> cshift, dinfo->pub.output_file);
	  putc(GETJSAMPLE(colormap[1][i]) >> cshift, dinfo->pub.output_file);
	  putc(GETJSAMPLE(colormap[2][i]) >> cshift, dinfo->pub.output_file);
	} else {
	  /* Grayscale "color map": possible if quantizing grayscale image */
	  put_3bytes(dinfo, GETJSAMPLE(colormap[0][i]) >> cshift);
	}
      } else {
	/* Create a gray-scale map of num_colors values, range 0..255 */
	put_3bytes(dinfo, (i * 255 + (num_colors-1)/2) / (num_colors-1));
      }
    } else {
      /* fill out the map to a power of 2 */
      put_3bytes(dinfo, 0);
    }
  }
  /* Write image separator and Image Descriptor */
  putc(',', dinfo->pub.output_file); /* separator */
  put_word(dinfo, 0);		/* left/top offset */
  put_word(dinfo, 0);
  put_word(dinfo, (unsigned int) dinfo->cinfo->output_width); /* image size */
  put_word(dinfo, (unsigned int) dinfo->cinfo->output_height);
  /* flag byte: not interlaced, no local color map */
  putc(0x00, dinfo->pub.output_file);
  /* Write Initial Code Size byte */
  putc(InitCodeSize, dinfo->pub.output_file);

  /* Initialize for "compression" of image data */
  compress_init(dinfo, InitCodeSize+1);
}


/*
 * Startup: write the file header.
 */

METHODDEF(void)
start_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  gif_dest_ptr dest = (gif_dest_ptr) dinfo;

  if (cinfo->quantize_colors)
    emit_header(dest, cinfo->actual_number_of_colors, cinfo->colormap);
  else
    emit_header(dest, 256, (JSAMPARRAY) NULL);
}


/*
 * Write some pixel data.
 * In this module rows_supplied will always be 1.
 */

METHODDEF(void)
put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		JDIMENSION rows_supplied)
{
  gif_dest_ptr dest = (gif_dest_ptr) dinfo;
  register JSAMPROW ptr;
  register JDIMENSION col;

  ptr = dest->pub.buffer[0];
  for (col = cinfo->output_width; col > 0; col--) {
    compress_pixel(dest, GETJSAMPLE(*ptr++));
  }
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_output_gif (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  gif_dest_ptr dest = (gif_dest_ptr) dinfo;

  /* Flush "compression" mechanism */
  compress_term(dest);
  /* Write a zero-length data block to end the series */
  putc(0, dest->pub.output_file);
  /* Write the GIF terminator mark */
  putc(';', dest->pub.output_file);
  /* Make sure we wrote the output file OK */
  fflush(dest->pub.output_file);
  if (ferror(dest->pub.output_file))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * The module selection routine for GIF format output.
 */

GLOBAL(djpeg_dest_ptr)
jinit_write_gif (j_decompress_ptr cinfo)
{
  gif_dest_ptr dest;

  /* Create module interface object, fill in method pointers */
  dest = (gif_dest_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(gif_dest_struct));
  dest->cinfo = cinfo;		/* make back link for subroutines */
  dest->pub.start_output = start_output_gif;
  dest->pub.put_pixel_rows = put_pixel_rows;
  dest->pub.finish_output = finish_output_gif;

  if (cinfo->out_color_space != JCS_GRAYSCALE &&
      cinfo->out_color_space != JCS_RGB)
    ERREXIT(cinfo, JERR_GIF_COLORSPACE);

  /* Force quantization if color or if > 8 bits input */
  if (cinfo->out_color_space != JCS_GRAYSCALE || cinfo->data_precision > 8) {
    /* Force quantization to at most 256 colors */
    cinfo->quantize_colors = TRUE;
    if (cinfo->desired_number_of_colors > 256)
      cinfo->desired_number_of_colors = 256;
  }

  /* Calculate output image dimensions so we can allocate space */
  jpeg_calc_output_dimensions(cinfo);

  if (cinfo->output_components != 1) /* safety check: just one component? */
    ERREXIT(cinfo, JERR_GIF_BUG);

  /* Create decompressor output buffer. */
  dest->pub.buffer = (*cinfo->mem->alloc_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, cinfo->output_width, (JDIMENSION) 1);
  dest->pub.buffer_height = 1;

  return (djpeg_dest_ptr) dest;
}

#endif /* GIF_SUPPORTED */

--- NEW FILE: jdmainct.c ---
/*
 * jdmainct.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the main buffer controller for decompression.
 * The main buffer lies between the JPEG decompressor proper and the
 * post-processor; it holds downsampled data in the JPEG colorspace.
 *
 * Note that this code is bypassed in raw-data mode, since the application
 * supplies the equivalent of the main buffer in that case.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * In the current system design, the main buffer need never be a full-image
 * buffer; any full-height buffers will be found inside the coefficient or
 * postprocessing controllers.  Nonetheless, the main controller is not
 * trivial.  Its responsibility is to provide context rows for upsampling/
 * rescaling, and doing this in an efficient fashion is a bit tricky.
 *
 * Postprocessor input data is counted in "row groups".  A row group
 * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
 * sample rows of each component.  (We require DCT_scaled_size values to be
 * chosen such that these numbers are integers.  In practice DCT_scaled_size
 * values will likely be powers of two, so we actually have the stronger
 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
 * Upsampling will typically produce max_v_samp_factor pixel rows from each
 * row group (times any additional scale factor that the upsampler is
 * applying).
 *
 * The coefficient controller will deliver data to us one iMCU row at a time;
 * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
 * exactly min_DCT_scaled_size row groups.  (This amount of data corresponds
 * to one row of MCUs when the image is fully interleaved.)  Note that the
 * number of sample rows varies across components, but the number of row
 * groups does not.  Some garbage sample rows may be included in the last iMCU
 * row at the bottom of the image.
 *
 * Depending on the vertical scaling algorithm used, the upsampler may need
 * access to the sample row(s) above and below its current input row group.
 * The upsampler is required to set need_context_rows TRUE at global selection
 * time if so.  When need_context_rows is FALSE, this controller can simply
 * obtain one iMCU row at a time from the coefficient controller and dole it
 * out as row groups to the postprocessor.
 *
 * When need_context_rows is TRUE, this controller guarantees that the buffer
 * passed to postprocessing contains at least one row group's worth of samples
 * above and below the row group(s) being processed.  Note that the context
 * rows "above" the first passed row group appear at negative row offsets in
 * the passed buffer.  At the top and bottom of the image, the required
 * context rows are manufactured by duplicating the first or last real sample
 * row; this avoids having special cases in the upsampling inner loops.
 *
 * The amount of context is fixed at one row group just because that's a
 * convenient number for this controller to work with.  The existing
 * upsamplers really only need one sample row of context.  An upsampler
 * supporting arbitrary output rescaling might wish for more than one row
 * group of context when shrinking the image; tough, we don't handle that.
 * (This is justified by the assumption that downsizing will be handled mostly
 * by adjusting the DCT_scaled_size values, so that the actual scale factor at
 * the upsample step needn't be much less than one.)
 *
 * To provide the desired context, we have to retain the last two row groups
 * of one iMCU row while reading in the next iMCU row.  (The last row group
 * can't be processed until we have another row group for its below-context,
 * and so we have to save the next-to-last group too for its above-context.)
 * We could do this most simply by copying data around in our buffer, but
 * that'd be very slow.  We can avoid copying any data by creating a rather
 * strange pointer structure.  Here's how it works.  We allocate a workspace
 * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
 * of row groups per iMCU row).  We create two sets of redundant pointers to
 * the workspace.  Labeling the physical row groups 0 to M+1, the synthesized
 * pointer lists look like this:
 *                   M+1                          M-1
 * master pointer --> 0         master pointer --> 0
 *                    1                            1
 *                   ...                          ...
 *                   M-3                          M-3
 *                   M-2                           M
 *                   M-1                          M+1
 *                    M                           M-2
 *                   M+1                          M-1
 *                    0                            0
 * We read alternate iMCU rows using each master pointer; thus the last two
 * row groups of the previous iMCU row remain un-overwritten in the workspace.
 * The pointer lists are set up so that the required context rows appear to
 * be adjacent to the proper places when we pass the pointer lists to the
 * upsampler.
 *
 * The above pictures describe the normal state of the pointer lists.
 * At top and bottom of the image, we diddle the pointer lists to duplicate
 * the first or last sample row as necessary (this is cheaper than copying
 * sample rows around).
 *
 * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1.  In that
 * situation each iMCU row provides only one row group so the buffering logic
 * must be different (eg, we must read two iMCU rows before we can emit the
 * first row group).  For now, we simply do not support providing context
 * rows when min_DCT_scaled_size is 1.  That combination seems unlikely to
 * be worth providing --- if someone wants a 1/8th-size preview, they probably
 * want it quick and dirty, so a context-free upsampler is sufficient.
 */


/* Private buffer controller object */

typedef struct {
  struct jpeg_d_main_controller pub; /* public fields */

  /* Pointer to allocated workspace (M or M+2 row groups). */
  JSAMPARRAY buffer[MAX_COMPONENTS];

  boolean buffer_full;		/* Have we gotten an iMCU row from decoder? */
  JDIMENSION rowgroup_ctr;	/* counts row groups output to postprocessor */

  /* Remaining fields are only used in the context case. */

  /* These are the master pointers to the funny-order pointer lists. */
  JSAMPIMAGE xbuffer[2];	/* pointers to weird pointer lists */

  int whichptr;			/* indicates which pointer set is now in use */
  int context_state;		/* process_data state machine status */
  JDIMENSION rowgroups_avail;	/* row groups available to postprocessor */
  JDIMENSION iMCU_row_ctr;	/* counts iMCU rows to detect image top/bot */
} my_main_controller;

typedef my_main_controller * my_main_ptr;

/* context_state values: */
#define CTX_PREPARE_FOR_IMCU	0	/* need to prepare for MCU row */
#define CTX_PROCESS_IMCU	1	/* feeding iMCU to postprocessor */
#define CTX_POSTPONED_ROW	2	/* feeding postponed row group */


/* Forward declarations */
METHODDEF(void) process_data_simple_main
	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
METHODDEF(void) process_data_context_main
	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
#ifdef QUANT_2PASS_SUPPORTED
METHODDEF(void) process_data_crank_post
	JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
	     JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
#endif


LOCAL(void)
alloc_funny_pointers (j_decompress_ptr cinfo)
/* Allocate space for the funny pointer lists.
 * This is done only once, not once per pass.
 */
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  int ci, rgroup;
  int M = cinfo->min_DCT_scaled_size;
  jpeg_component_info *compptr;
  JSAMPARRAY xbuf;

  /* Get top-level space for component array pointers.
   * We alloc both arrays with one call to save a few cycles.
   */
  main->xbuffer[0] = (JSAMPIMAGE)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
  main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
      cinfo->min_DCT_scaled_size; /* height of a row group of component */
    /* Get space for pointer lists --- M+4 row groups in each list.
     * We alloc both pointer lists with one call to save a few cycles.
     */
    xbuf = (JSAMPARRAY)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
    xbuf += rgroup;		/* want one row group at negative offsets */
    main->xbuffer[0][ci] = xbuf;
    xbuf += rgroup * (M + 4);
    main->xbuffer[1][ci] = xbuf;
  }
}


LOCAL(void)
make_funny_pointers (j_decompress_ptr cinfo)
/* Create the funny pointer lists discussed in the comments above.
 * The actual workspace is already allocated (in main->buffer),
 * and the space for the pointer lists is allocated too.
 * This routine just fills in the curiously ordered lists.
 * This will be repeated at the beginning of each pass.
 */
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  int ci, i, rgroup;
  int M = cinfo->min_DCT_scaled_size;
  jpeg_component_info *compptr;
  JSAMPARRAY buf, xbuf0, xbuf1;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
      cinfo->min_DCT_scaled_size; /* height of a row group of component */
    xbuf0 = main->xbuffer[0][ci];
    xbuf1 = main->xbuffer[1][ci];
    /* First copy the workspace pointers as-is */
    buf = main->buffer[ci];
    for (i = 0; i < rgroup * (M + 2); i++) {
      xbuf0[i] = xbuf1[i] = buf[i];
    }
    /* In the second list, put the last four row groups in swapped order */
    for (i = 0; i < rgroup * 2; i++) {
      xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
      xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
    }
    /* The wraparound pointers at top and bottom will be filled later
     * (see set_wraparound_pointers, below).  Initially we want the "above"
     * pointers to duplicate the first actual data line.  This only needs
     * to happen in xbuffer[0].
     */
    for (i = 0; i < rgroup; i++) {
      xbuf0[i - rgroup] = xbuf0[0];
    }
  }
}


LOCAL(void)
set_wraparound_pointers (j_decompress_ptr cinfo)
/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
 * This changes the pointer list state from top-of-image to the normal state.
 */
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  int ci, i, rgroup;
  int M = cinfo->min_DCT_scaled_size;
  jpeg_component_info *compptr;
  JSAMPARRAY xbuf0, xbuf1;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
      cinfo->min_DCT_scaled_size; /* height of a row group of component */
    xbuf0 = main->xbuffer[0][ci];
    xbuf1 = main->xbuffer[1][ci];
    for (i = 0; i < rgroup; i++) {
      xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
      xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
      xbuf0[rgroup*(M+2) + i] = xbuf0[i];
      xbuf1[rgroup*(M+2) + i] = xbuf1[i];
    }
  }
}


LOCAL(void)
set_bottom_pointers (j_decompress_ptr cinfo)
/* Change the pointer lists to duplicate the last sample row at the bottom
 * of the image.  whichptr indicates which xbuffer holds the final iMCU row.
 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
 */
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  int ci, i, rgroup, iMCUheight, rows_left;
  jpeg_component_info *compptr;
  JSAMPARRAY xbuf;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Count sample rows in one iMCU row and in one row group */
    iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
    rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
    /* Count nondummy sample rows remaining for this component */
    rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
    if (rows_left == 0) rows_left = iMCUheight;
    /* Count nondummy row groups.  Should get same answer for each component,
     * so we need only do it once.
     */
    if (ci == 0) {
      main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
    }
    /* Duplicate the last real sample row rgroup*2 times; this pads out the
     * last partial rowgroup and ensures at least one full rowgroup of context.
     */
    xbuf = main->xbuffer[main->whichptr][ci];
    for (i = 0; i < rgroup * 2; i++) {
      xbuf[rows_left + i] = xbuf[rows_left-1];
    }
  }
}


/*
 * Initialize for a processing pass.
 */

METHODDEF(void)
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;

  switch (pass_mode) {
  case JBUF_PASS_THRU:
    if (cinfo->upsample->need_context_rows) {
      main->pub.process_data = process_data_context_main;
      make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
      main->whichptr = 0;	/* Read first iMCU row into xbuffer[0] */
      main->context_state = CTX_PREPARE_FOR_IMCU;
      main->iMCU_row_ctr = 0;
    } else {
      /* Simple case with no context needed */
      main->pub.process_data = process_data_simple_main;
    }
    main->buffer_full = FALSE;	/* Mark buffer empty */
    main->rowgroup_ctr = 0;
    break;
#ifdef QUANT_2PASS_SUPPORTED
  case JBUF_CRANK_DEST:
    /* For last pass of 2-pass quantization, just crank the postprocessor */
    main->pub.process_data = process_data_crank_post;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    break;
  }
}


/*
 * Process some data.
 * This handles the simple case where no context is required.
 */

METHODDEF(void)
process_data_simple_main (j_decompress_ptr cinfo,
			  JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
			  JDIMENSION out_rows_avail)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  JDIMENSION rowgroups_avail;

  /* Read input data if we haven't filled the main buffer yet */
  if (! main->buffer_full) {
    if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
      return;			/* suspension forced, can do nothing more */
    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
  }

  /* There are always min_DCT_scaled_size row groups in an iMCU row. */
  rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
  /* Note: at the bottom of the image, we may pass extra garbage row groups
   * to the postprocessor.  The postprocessor has to check for bottom
   * of image anyway (at row resolution), so no point in us doing it too.
   */

  /* Feed the postprocessor */
  (*cinfo->post->post_process_data) (cinfo, main->buffer,
				     &main->rowgroup_ctr, rowgroups_avail,
				     output_buf, out_row_ctr, out_rows_avail);

  /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
  if (main->rowgroup_ctr >= rowgroups_avail) {
    main->buffer_full = FALSE;
    main->rowgroup_ctr = 0;
  }
}


/*
 * Process some data.
 * This handles the case where context rows must be provided.
 */

METHODDEF(void)
process_data_context_main (j_decompress_ptr cinfo,
			   JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
			   JDIMENSION out_rows_avail)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;

  /* Read input data if we haven't filled the main buffer yet */
  if (! main->buffer_full) {
    if (! (*cinfo->coef->decompress_data) (cinfo,
					   main->xbuffer[main->whichptr]))
      return;			/* suspension forced, can do nothing more */
    main->buffer_full = TRUE;	/* OK, we have an iMCU row to work with */
    main->iMCU_row_ctr++;	/* count rows received */
  }

  /* Postprocessor typically will not swallow all the input data it is handed
   * in one call (due to filling the output buffer first).  Must be prepared
   * to exit and restart.  This switch lets us keep track of how far we got.
   * Note that each case falls through to the next on successful completion.
   */
  switch (main->context_state) {
  case CTX_POSTPONED_ROW:
    /* Call postprocessor using previously set pointers for postponed row */
    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
			&main->rowgroup_ctr, main->rowgroups_avail,
			output_buf, out_row_ctr, out_rows_avail);
    if (main->rowgroup_ctr < main->rowgroups_avail)
      return;			/* Need to suspend */
    main->context_state = CTX_PREPARE_FOR_IMCU;
    if (*out_row_ctr >= out_rows_avail)
      return;			/* Postprocessor exactly filled output buf */
    /*FALLTHROUGH*/
  case CTX_PREPARE_FOR_IMCU:
    /* Prepare to process first M-1 row groups of this iMCU row */
    main->rowgroup_ctr = 0;
    main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
    /* Check for bottom of image: if so, tweak pointers to "duplicate"
     * the last sample row, and adjust rowgroups_avail to ignore padding rows.
     */
    if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
      set_bottom_pointers(cinfo);
    main->context_state = CTX_PROCESS_IMCU;
    /*FALLTHROUGH*/
  case CTX_PROCESS_IMCU:
    /* Call postprocessor using previously set pointers */
    (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
			&main->rowgroup_ctr, main->rowgroups_avail,
			output_buf, out_row_ctr, out_rows_avail);
    if (main->rowgroup_ctr < main->rowgroups_avail)
      return;			/* Need to suspend */
    /* After the first iMCU, change wraparound pointers to normal state */
    if (main->iMCU_row_ctr == 1)
      set_wraparound_pointers(cinfo);
    /* Prepare to load new iMCU row using other xbuffer list */
    main->whichptr ^= 1;	/* 0=>1 or 1=>0 */
    main->buffer_full = FALSE;
    /* Still need to process last row group of this iMCU row, */
    /* which is saved at index M+1 of the other xbuffer */
    main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
    main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
    main->context_state = CTX_POSTPONED_ROW;
  }
}


/*
 * Process some data.
 * Final pass of two-pass quantization: just call the postprocessor.
 * Source data will be the postprocessor controller's internal buffer.
 */

#ifdef QUANT_2PASS_SUPPORTED

METHODDEF(void)
process_data_crank_post (j_decompress_ptr cinfo,
			 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
			 JDIMENSION out_rows_avail)
{
  (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
				     (JDIMENSION *) NULL, (JDIMENSION) 0,
				     output_buf, out_row_ctr, out_rows_avail);
}

#endif /* QUANT_2PASS_SUPPORTED */


/*
 * Initialize main buffer controller.
 */

GLOBAL(void)
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
  my_main_ptr main;
  int ci, rgroup, ngroups;
  jpeg_component_info *compptr;

  main = (my_main_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_main_controller));
  cinfo->main = (struct jpeg_d_main_controller *) main;
  main->pub.start_pass = start_pass_main;

  if (need_full_buffer)		/* shouldn't happen */
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);

  /* Allocate the workspace.
   * ngroups is the number of row groups we need.
   */
  if (cinfo->upsample->need_context_rows) {
    if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
      ERREXIT(cinfo, JERR_NOTIMPL);
    alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
    ngroups = cinfo->min_DCT_scaled_size + 2;
  } else {
    ngroups = cinfo->min_DCT_scaled_size;
  }

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
      cinfo->min_DCT_scaled_size; /* height of a row group of component */
    main->buffer[ci] = (*cinfo->mem->alloc_sarray)
			((j_common_ptr) cinfo, JPOOL_IMAGE,
			 compptr->width_in_blocks * compptr->DCT_scaled_size,
			 (JDIMENSION) (rgroup * ngroups));
  }
}

--- NEW FILE: jddctmgr.c ---
/*
 * jddctmgr.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the inverse-DCT management logic.
 * This code selects a particular IDCT implementation to be used,
 * and it performs related housekeeping chores.  No code in this file
 * is executed per IDCT step, only during output pass setup.
 *
 * Note that the IDCT routines are responsible for performing coefficient
 * dequantization as well as the IDCT proper.  This module sets up the
 * dequantization multiplier table needed by the IDCT routine.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */


/*
 * The decompressor input side (jdinput.c) saves away the appropriate
 * quantization table for each component at the start of the first scan
 * involving that component.  (This is necessary in order to correctly
 * decode files that reuse Q-table slots.)
 * When we are ready to make an output pass, the saved Q-table is converted
 * to a multiplier table that will actually be used by the IDCT routine.
 * The multiplier table contents are IDCT-method-dependent.  To support
 * application changes in IDCT method between scans, we can remake the
 * multiplier tables if necessary.
 * In buffered-image mode, the first output pass may occur before any data
 * has been seen for some components, and thus before their Q-tables have
 * been saved away.  To handle this case, multiplier tables are preset
 * to zeroes; the result of the IDCT will be a neutral gray level.
 */


/* Private subobject for this module */

typedef struct {
  struct jpeg_inverse_dct pub;	/* public fields */

  /* This array contains the IDCT method code that each multiplier table
   * is currently set up for, or -1 if it's not yet set up.
   * The actual multiplier tables are pointed to by dct_table in the
   * per-component comp_info structures.
   */
  int cur_method[MAX_COMPONENTS];
} my_idct_controller;

typedef my_idct_controller * my_idct_ptr;


/* Allocated multiplier tables: big enough for any supported variant */

typedef union {
  ISLOW_MULT_TYPE islow_array[DCTSIZE2];
#ifdef DCT_IFAST_SUPPORTED
  IFAST_MULT_TYPE ifast_array[DCTSIZE2];
#endif
#ifdef DCT_FLOAT_SUPPORTED
  FLOAT_MULT_TYPE float_array[DCTSIZE2];
#endif
} multiplier_table;


/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
 * so be sure to compile that code if either ISLOW or SCALING is requested.
 */
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif


/*
 * Prepare for an output pass.
 * Here we select the proper IDCT routine for each component and build
 * a matching multiplier table.
 */

METHODDEF(void)
start_pass (j_decompress_ptr cinfo)
{
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
  int ci, i;
  jpeg_component_info *compptr;
  int method = 0;
  inverse_DCT_method_ptr method_ptr = NULL;
  JQUANT_TBL * qtbl;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Select the proper IDCT routine for this component's scaling */
    switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
    case 1:
      method_ptr = jpeg_idct_1x1;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
    case 2:
      method_ptr = jpeg_idct_2x2;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
    case 4:
      method_ptr = jpeg_idct_4x4;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
#endif
    case DCTSIZE:
      switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
      case JDCT_ISLOW:
	method_ptr = jpeg_idct_islow;
	method = JDCT_ISLOW;
	break;
#endif
#ifdef DCT_IFAST_SUPPORTED
      case JDCT_IFAST:
	method_ptr = jpeg_idct_ifast;
	method = JDCT_IFAST;
	break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
      case JDCT_FLOAT:
	method_ptr = jpeg_idct_float;
	method = JDCT_FLOAT;
	break;
#endif
      default:
	ERREXIT(cinfo, JERR_NOT_COMPILED);
	break;
      }
      break;
    default:
      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
      break;
    }
    idct->pub.inverse_DCT[ci] = method_ptr;
    /* Create multiplier table from quant table.
     * However, we can skip this if the component is uninteresting
     * or if we already built the table.  Also, if no quant table
     * has yet been saved for the component, we leave the
     * multiplier table all-zero; we'll be reading zeroes from the
     * coefficient controller's buffer anyway.
     */
    if (! compptr->component_needed || idct->cur_method[ci] == method)
      continue;
    qtbl = compptr->quant_table;
    if (qtbl == NULL)		/* happens if no data yet for component */
      continue;
    idct->cur_method[ci] = method;
    switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
    case JDCT_ISLOW:
      {
	/* For LL&M IDCT method, multipliers are equal to raw quantization
	 * coefficients, but are stored as ints to ensure access efficiency.
	 */
	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
	for (i = 0; i < DCTSIZE2; i++) {
	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
	}
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
	/* For AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * For integer operation, the multiplier table is to be scaled by
	 * IFAST_SCALE_BITS.
	 */
	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
	static const INT16 aanscales[DCTSIZE2] = {
	  /* precomputed values scaled up by 14 bits */
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
	};
	SHIFT_TEMPS

	for (i = 0; i < DCTSIZE2; i++) {
	  ifmtbl[i] = (IFAST_MULT_TYPE)
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
				  (INT32) aanscales[i]),
		    CONST_BITS-IFAST_SCALE_BITS);
	}
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
	/* For float AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 */
	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
	int row, col;
	static const double aanscalefactor[DCTSIZE] = {
	  1.0, 1.387039845, 1.306562965, 1.175875602,
	  1.0, 0.785694958, 0.541196100, 0.275899379
	};

	i = 0;
	for (row = 0; row < DCTSIZE; row++) {
	  for (col = 0; col < DCTSIZE; col++) {
	    fmtbl[i] = (FLOAT_MULT_TYPE)
	      ((double) qtbl->quantval[i] *
	       aanscalefactor[row] * aanscalefactor[col]);
	    i++;
	  }
	}
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}


/*
 * Initialize IDCT manager.
 */

GLOBAL(void)
jinit_inverse_dct (j_decompress_ptr cinfo)
{
  my_idct_ptr idct;
  int ci;
  jpeg_component_info *compptr;

  idct = (my_idct_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_idct_controller));
  cinfo->idct = (struct jpeg_inverse_dct *) idct;
  idct->pub.start_pass = start_pass;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Allocate and pre-zero a multiplier table for each component */
    compptr->dct_table =
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(multiplier_table));
    MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
    /* Mark multiplier table not yet set up for any method */
    idct->cur_method[ci] = -1;
  }
}

--- NEW FILE: cjpeg.c ---
/*
 * cjpeg.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a command-line user interface for the JPEG compressor.
 * It should work on any system with Unix- or MS-DOS-style command lines.
 *
 * Two different command line styles are permitted, depending on the
 * compile-time switch TWO_FILE_COMMANDLINE:
 *	cjpeg [options]  inputfile outputfile
 *	cjpeg [options]  [inputfile]
 * In the second style, output is always to standard output, which you'd
 * normally redirect to a file or pipe to some other program.  Input is
 * either from a named file or from standard input (typically redirected).
 * The second style is convenient on Unix but is unhelpful on systems that
 * don't support pipes.  Also, you MUST use the first style if your system
 * doesn't do binary I/O to stdin/stdout.
 * To simplify script writing, the "-outfile" switch is provided.  The syntax
 *	cjpeg [options]  -outfile outputfile  inputfile
 * works regardless of which command line style is used.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */
#include "jversion.h"		/* for version message */

#ifdef USE_CCOMMAND		/* command-line reader for Macintosh */
#ifdef __MWERKS__
#include <SIOUX.h>              /* Metrowerks needs this */
#include <console.h>		/* ... and this */
#endif
#ifdef THINK_C
#include <console.h>		/* Think declares it here */
#endif
#endif


/* Create the add-on message string table. */

#define JMESSAGE(code,string)	string ,

static const char * const cdjpeg_message_table[] = {
#include "cderror.h"
  NULL
};


/*
 * This routine determines what format the input file is,
 * and selects the appropriate input-reading module.
 *
 * To determine which family of input formats the file belongs to,
 * we may look only at the first byte of the file, since C does not
 * guarantee that more than one character can be pushed back with ungetc.
 * Looking at additional bytes would require one of these approaches:
 *     1) assume we can fseek() the input file (fails for piped input);
 *     2) assume we can push back more than one character (works in
 *        some C implementations, but unportable);
 *     3) provide our own buffering (breaks input readers that want to use
 *        stdio directly, such as the RLE library);
 * or  4) don't put back the data, and modify the input_init methods to assume
 *        they start reading after the start of file (also breaks RLE library).
 * #1 is attractive for MS-DOS but is untenable on Unix.
 *
 * The most portable solution for file types that can't be identified by their
 * first byte is to make the user tell us what they are.  This is also the
 * only approach for "raw" file types that contain only arbitrary values.
 * We presently apply this method for Targa files.  Most of the time Targa
 * files start with 0x00, so we recognize that case.  Potentially, however,
 * a Targa file could start with any byte value (byte 0 is the length of the
 * seldom-used ID field), so we provide a switch to force Targa input mode.
 */

static boolean is_targa;	/* records user -targa switch */


LOCAL(cjpeg_source_ptr)
select_file_type (j_compress_ptr cinfo, FILE * infile)
{
  int c;

  if (is_targa) {
#ifdef TARGA_SUPPORTED
    return jinit_read_targa(cinfo);
#else
    ERREXIT(cinfo, JERR_TGA_NOTCOMP);
#endif
  }

  if ((c = getc(infile)) == EOF)
    ERREXIT(cinfo, JERR_INPUT_EMPTY);
  if (ungetc(c, infile) == EOF)
    ERREXIT(cinfo, JERR_UNGETC_FAILED);

  switch (c) {
#ifdef BMP_SUPPORTED
  case 'B':
    return jinit_read_bmp(cinfo);
#endif
#ifdef GIF_SUPPORTED
  case 'G':
    return jinit_read_gif(cinfo);
#endif
#ifdef PPM_SUPPORTED
  case 'P':
    return jinit_read_ppm(cinfo);
#endif
#ifdef RLE_SUPPORTED
  case 'R':
    return jinit_read_rle(cinfo);
#endif
#ifdef TARGA_SUPPORTED
  case 0x00:
    return jinit_read_targa(cinfo);
#endif
  default:
    ERREXIT(cinfo, JERR_UNKNOWN_FORMAT);
    break;
  }

  return NULL;			/* suppress compiler warnings */
}


/*
 * Argument-parsing code.
 * The switch parser is designed to be useful with DOS-style command line
 * syntax, ie, intermixed switches and file names, where only the switches
 * to the left of a given file name affect processing of that file.
 * The main program in this file doesn't actually use this capability...
 */


static const char * progname;	/* program name for error messages */
static char * outfilename;	/* for -outfile switch */


LOCAL(void)
usage (void)
/* complain about bad command line */
{
  fprintf(stderr, "usage: %s [switches] ", progname);
#ifdef TWO_FILE_COMMANDLINE
  fprintf(stderr, "inputfile outputfile\n");
#else
  fprintf(stderr, "[inputfile]\n");
#endif

  fprintf(stderr, "Switches (names may be abbreviated):\n");
  fprintf(stderr, "  -quality N     Compression quality (0..100; 5-95 is useful range)\n");
  fprintf(stderr, "  -grayscale     Create monochrome JPEG file\n");
#ifdef ENTROPY_OPT_SUPPORTED
  fprintf(stderr, "  -optimize      Optimize Huffman table (smaller file, but slow compression)\n");
#endif
#ifdef C_PROGRESSIVE_SUPPORTED
  fprintf(stderr, "  -progressive   Create progressive JPEG file\n");
#endif
#ifdef TARGA_SUPPORTED
  fprintf(stderr, "  -targa         Input file is Targa format (usually not needed)\n");
#endif
  fprintf(stderr, "Switches for advanced users:\n");
#ifdef DCT_ISLOW_SUPPORTED
  fprintf(stderr, "  -dct int       Use integer DCT method%s\n",
	  (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : ""));
#endif
#ifdef DCT_IFAST_SUPPORTED
  fprintf(stderr, "  -dct fast      Use fast integer DCT (less accurate)%s\n",
	  (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : ""));
#endif
#ifdef DCT_FLOAT_SUPPORTED
  fprintf(stderr, "  -dct float     Use floating-point DCT method%s\n",
	  (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : ""));
#endif
  fprintf(stderr, "  -restart N     Set restart interval in rows, or in blocks with B\n");
#ifdef INPUT_SMOOTHING_SUPPORTED
  fprintf(stderr, "  -smooth N      Smooth dithered input (N=1..100 is strength)\n");
#endif
  fprintf(stderr, "  -maxmemory N   Maximum memory to use (in kbytes)\n");
  fprintf(stderr, "  -outfile name  Specify name for output file\n");
  fprintf(stderr, "  -verbose  or  -debug   Emit debug output\n");
  fprintf(stderr, "Switches for wizards:\n");
#ifdef C_ARITH_CODING_SUPPORTED
  fprintf(stderr, "  -arithmetic    Use arithmetic coding\n");
#endif
  fprintf(stderr, "  -baseline      Force baseline quantization tables\n");
  fprintf(stderr, "  -qtables file  Use quantization tables given in file\n");
  fprintf(stderr, "  -qslots N[,...]    Set component quantization tables\n");
  fprintf(stderr, "  -sample HxV[,...]  Set component sampling factors\n");
#ifdef C_MULTISCAN_FILES_SUPPORTED
  fprintf(stderr, "  -scans file    Create multi-scan JPEG per script file\n");
#endif
  exit(EXIT_FAILURE);
}


LOCAL(int)
parse_switches (j_compress_ptr cinfo, int argc, char **argv,
		int last_file_arg_seen, boolean for_real)
/* Parse optional switches.
 * Returns argv[] index of first file-name argument (== argc if none).
 * Any file names with indexes <= last_file_arg_seen are ignored;
 * they have presumably been processed in a previous iteration.
 * (Pass 0 for last_file_arg_seen on the first or only iteration.)
 * for_real is FALSE on the first (dummy) pass; we may skip any expensive
 * processing.
 */
{
  int argn;
  char * arg;
  int quality;			/* -quality parameter */
  int q_scale_factor;		/* scaling percentage for -qtables */
  boolean force_baseline;
  boolean simple_progressive;
  char * qtablefile = NULL;	/* saves -qtables filename if any */
  char * qslotsarg = NULL;	/* saves -qslots parm if any */
  char * samplearg = NULL;	/* saves -sample parm if any */
  char * scansarg = NULL;	/* saves -scans parm if any */

  /* Set up default JPEG parameters. */
  /* Note that default -quality level need not, and does not,
   * match the default scaling for an explicit -qtables argument.
   */
  quality = 75;			/* default -quality value */
  q_scale_factor = 100;		/* default to no scaling for -qtables */
  force_baseline = FALSE;	/* by default, allow 16-bit quantizers */
  simple_progressive = FALSE;
  is_targa = FALSE;
  outfilename = NULL;
  cinfo->err->trace_level = 0;

  /* Scan command line options, adjust parameters */

  for (argn = 1; argn < argc; argn++) {
    arg = argv[argn];
    if (*arg != '-') {
      /* Not a switch, must be a file name argument */
      if (argn <= last_file_arg_seen) {
	outfilename = NULL;	/* -outfile applies to just one input file */
	continue;		/* ignore this name if previously processed */
      }
      break;			/* else done parsing switches */
    }
    arg++;			/* advance past switch marker character */

    if (keymatch(arg, "arithmetic", 1)) {
      /* Use arithmetic coding. */
#ifdef C_ARITH_CODING_SUPPORTED
      cinfo->arith_code = TRUE;
#else
      fprintf(stderr, "%s: sorry, arithmetic coding not supported\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "baseline", 1)) {
      /* Force baseline-compatible output (8-bit quantizer values). */
      force_baseline = TRUE;

    } else if (keymatch(arg, "dct", 2)) {
      /* Select DCT algorithm. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (keymatch(argv[argn], "int", 1)) {
	cinfo->dct_method = JDCT_ISLOW;
      } else if (keymatch(argv[argn], "fast", 2)) {
	cinfo->dct_method = JDCT_IFAST;
      } else if (keymatch(argv[argn], "float", 2)) {
	cinfo->dct_method = JDCT_FLOAT;
      } else
	usage();

    } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) {
      /* Enable debug printouts. */
      /* On first -d, print version identification */
      static boolean printed_version = FALSE;

      if (! printed_version) {
	fprintf(stderr, "Independent JPEG Group's CJPEG, version %s\n%s\n",
		JVERSION, JCOPYRIGHT);
	printed_version = TRUE;
      }
      cinfo->err->trace_level++;

    } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale",2)) {
      /* Force a monochrome JPEG file to be generated. */
      jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);

    } else if (keymatch(arg, "maxmemory", 3)) {
      /* Maximum memory in Kb (or Mb with 'm'). */
      long lval;
      char ch = 'x';

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
	usage();
      if (ch == 'm' || ch == 'M')
	lval *= 1000L;
      cinfo->mem->max_memory_to_use = lval * 1000L;

    } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) {
      /* Enable entropy parm optimization. */
#ifdef ENTROPY_OPT_SUPPORTED
      cinfo->optimize_coding = TRUE;
#else
      fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "outfile", 4)) {
      /* Set output file name. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      outfilename = argv[argn];	/* save it away for later use */

    } else if (keymatch(arg, "progressive", 1)) {
      /* Select simple progressive mode. */
#ifdef C_PROGRESSIVE_SUPPORTED
      simple_progressive = TRUE;
      /* We must postpone execution until num_components is known. */
#else
      fprintf(stderr, "%s: sorry, progressive output was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "quality", 1)) {
      /* Quality factor (quantization table scaling factor). */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%d", &quality) != 1)
	usage();
      /* Change scale factor in case -qtables is present. */
      q_scale_factor = jpeg_quality_scaling(quality);

    } else if (keymatch(arg, "qslots", 2)) {
      /* Quantization table slot numbers. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      qslotsarg = argv[argn];
      /* Must delay setting qslots until after we have processed any
       * colorspace-determining switches, since jpeg_set_colorspace sets
       * default quant table numbers.
       */

    } else if (keymatch(arg, "qtables", 2)) {
      /* Quantization tables fetched from file. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      qtablefile = argv[argn];
      /* We postpone actually reading the file in case -quality comes later. */

    } else if (keymatch(arg, "restart", 1)) {
      /* Restart interval in MCU rows (or in MCUs with 'b'). */
      long lval;
      char ch = 'x';

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1)
	usage();
      if (lval < 0 || lval > 65535L)
	usage();
      if (ch == 'b' || ch == 'B') {
	cinfo->restart_interval = (unsigned int) lval;
	cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */
      } else {
	cinfo->restart_in_rows = (int) lval;
	/* restart_interval will be computed during startup */
      }

    } else if (keymatch(arg, "sample", 2)) {
      /* Set sampling factors. */
      if (++argn >= argc)	/* advance to next argument */
	usage();
      samplearg = argv[argn];
      /* Must delay setting sample factors until after we have processed any
       * colorspace-determining switches, since jpeg_set_colorspace sets
       * default sampling factors.
       */

    } else if (keymatch(arg, "scans", 2)) {
      /* Set scan script. */
#ifdef C_MULTISCAN_FILES_SUPPORTED
      if (++argn >= argc)	/* advance to next argument */
	usage();
      scansarg = argv[argn];
      /* We must postpone reading the file in case -progressive appears. */
#else
      fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n",
	      progname);
      exit(EXIT_FAILURE);
#endif

    } else if (keymatch(arg, "smooth", 2)) {
      /* Set input smoothing factor. */
      int val;

      if (++argn >= argc)	/* advance to next argument */
	usage();
      if (sscanf(argv[argn], "%d", &val) != 1)
	usage();
      if (val < 0 || val > 100)
	usage();
      cinfo->smoothing_factor = val;

    } else if (keymatch(arg, "targa", 1)) {
      /* Input file is Targa format. */
      is_targa = TRUE;

    } else {
      usage();			/* bogus switch */
    }
  }

  /* Post-switch-scanning cleanup */

  if (for_real) {

    /* Set quantization tables for selected quality. */
    /* Some or all may be overridden if -qtables is present. */
    jpeg_set_quality(cinfo, quality, force_baseline);

    if (qtablefile != NULL)	/* process -qtables if it was present */
      if (! read_quant_tables(cinfo, qtablefile,
			      q_scale_factor, force_baseline))
	usage();

    if (qslotsarg != NULL)	/* process -qslots if it was present */
      if (! set_quant_slots(cinfo, qslotsarg))
	usage();

    if (samplearg != NULL)	/* process -sample if it was present */
      if (! set_sample_factors(cinfo, samplearg))
	usage();

#ifdef C_PROGRESSIVE_SUPPORTED
    if (simple_progressive)	/* process -progressive; -scans can override */
      jpeg_simple_progression(cinfo);
#endif

#ifdef C_MULTISCAN_FILES_SUPPORTED
    if (scansarg != NULL)	/* process -scans if it was present */
      if (! read_scan_script(cinfo, scansarg))
	usage();
#endif
  }

  return argn;			/* return index of next arg (file name) */
}


/*
 * The main program.
 */

int
main (int argc, char **argv)
{
  struct jpeg_compress_struct cinfo;
  struct jpeg_error_mgr jerr;
#ifdef PROGRESS_REPORT
  struct cdjpeg_progress_mgr progress;
#endif
  int file_index;
  cjpeg_source_ptr src_mgr;
  FILE * input_file;
  FILE * output_file;
  JDIMENSION num_scanlines;

  /* On Mac, fetch a command line. */
#ifdef USE_CCOMMAND
  argc = ccommand(&argv);
#endif

  progname = argv[0];
  if (progname == NULL || progname[0] == 0)
    progname = "cjpeg";		/* in case C library doesn't provide it */

  /* Initialize the JPEG compression object with default error handling. */
  cinfo.err = jpeg_std_error(&jerr);
  jpeg_create_compress(&cinfo);
  /* Add some application-specific error messages (from cderror.h) */
  jerr.addon_message_table = cdjpeg_message_table;
  jerr.first_addon_message = JMSG_FIRSTADDONCODE;
  jerr.last_addon_message = JMSG_LASTADDONCODE;

  /* Now safe to enable signal catcher. */
#ifdef NEED_SIGNAL_CATCHER
  enable_signal_catcher((j_common_ptr) &cinfo);
#endif

  /* Initialize JPEG parameters.
   * Much of this may be overridden later.
   * In particular, we don't yet know the input file's color space,
   * but we need to provide some value for jpeg_set_defaults() to work.
   */

  cinfo.in_color_space = JCS_RGB; /* arbitrary guess */
  jpeg_set_defaults(&cinfo);

  /* Scan command line to find file names.
   * It is convenient to use just one switch-parsing routine, but the switch
   * values read here are ignored; we will rescan the switches after opening
   * the input file.
   */

  file_index = parse_switches(&cinfo, argc, argv, 0, FALSE);

#ifdef TWO_FILE_COMMANDLINE
  /* Must have either -outfile switch or explicit output file name */
  if (outfilename == NULL) {
    if (file_index != argc-2) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
    outfilename = argv[file_index+1];
  } else {
    if (file_index != argc-1) {
      fprintf(stderr, "%s: must name one input and one output file\n",
	      progname);
      usage();
    }
  }
#else
  /* Unix style: expect zero or one file name */
  if (file_index < argc-1) {
    fprintf(stderr, "%s: only one input file\n", progname);
    usage();
  }
#endif /* TWO_FILE_COMMANDLINE */

  /* Open the input file. */
  if (file_index < argc) {
    if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default input file is stdin */
    input_file = read_stdin();
  }

  /* Open the output file. */
  if (outfilename != NULL) {
    if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) {
      fprintf(stderr, "%s: can't open %s\n", progname, outfilename);
      exit(EXIT_FAILURE);
    }
  } else {
    /* default output file is stdout */
    output_file = write_stdout();
  }

#ifdef PROGRESS_REPORT
  start_progress_monitor((j_common_ptr) &cinfo, &progress);
#endif

  /* Figure out the input file format, and set up to read it. */
  src_mgr = select_file_type(&cinfo, input_file);
  src_mgr->input_file = input_file;

  /* Read the input file header to obtain file size & colorspace. */
  (*src_mgr->start_input) (&cinfo, src_mgr);

  /* Now that we know input colorspace, fix colorspace-dependent defaults */
  jpeg_default_colorspace(&cinfo);

  /* Adjust default compression parameters by re-parsing the options */
  file_index = parse_switches(&cinfo, argc, argv, 0, TRUE);

  /* Specify data destination for compression */
  jpeg_stdio_dest(&cinfo, output_file);

  /* Start compressor */
  jpeg_start_compress(&cinfo, TRUE);

  /* Process data */
  while (cinfo.next_scanline < cinfo.image_height) {
    num_scanlines = (*src_mgr->get_pixel_rows) (&cinfo, src_mgr);
    (void) jpeg_write_scanlines(&cinfo, src_mgr->buffer, num_scanlines);
  }

  /* Finish compression and release memory */
  (*src_mgr->finish_input) (&cinfo, src_mgr);
  jpeg_finish_compress(&cinfo);
  jpeg_destroy_compress(&cinfo);

  /* Close files, if we opened them */
  if (input_file != stdin)
    fclose(input_file);
  if (output_file != stdout)
    fclose(output_file);

#ifdef PROGRESS_REPORT
  end_progress_monitor((j_common_ptr) &cinfo);
#endif

  /* All done. */
  exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS);
  return 0;			/* suppress no-return-value warnings */
}

--- NEW FILE: jdinput.c ---
/*
 * jdinput.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains input control logic for the JPEG decompressor.
 * These routines are concerned with controlling the decompressor's input
 * processing (marker reading and coefficient decoding).  The actual input
 * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Private state */

typedef struct {
  struct jpeg_input_controller pub; /* public fields */

  boolean inheaders;		/* TRUE until first SOS is reached */
} my_input_controller;

typedef my_input_controller * my_inputctl_ptr;


/* Forward declarations */
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo));


/*
 * Routines to calculate various quantities related to the size of the image.
 */

LOCAL(void)
initial_setup (j_decompress_ptr cinfo)
/* Called once, when first SOS marker is reached */
{
  int ci;
  jpeg_component_info *compptr;

  /* Make sure image isn't bigger than I can handle */
  if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
      (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
    ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);

  /* For now, precision must match compiled-in value... */
  if (cinfo->data_precision != BITS_IN_JSAMPLE)
    ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);

  /* Check that number of components won't exceed internal array sizes */
  if (cinfo->num_components > MAX_COMPONENTS)
    ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
	     MAX_COMPONENTS);

  /* Compute maximum sampling factors; check factor validity */
  cinfo->max_h_samp_factor = 1;
  cinfo->max_v_samp_factor = 1;
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
	compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
      ERREXIT(cinfo, JERR_BAD_SAMPLING);
    cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
				   compptr->h_samp_factor);
    cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
				   compptr->v_samp_factor);
  }

  /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
   * In the full decompressor, this will be overridden by jdmaster.c;
   * but in the transcoder, jdmaster.c is not used, so we must do it here.
   */
  cinfo->min_DCT_scaled_size = DCTSIZE;

  /* Compute dimensions of components */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    compptr->DCT_scaled_size = DCTSIZE;
    /* Size in DCT blocks */
    compptr->width_in_blocks = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
		    (long) (cinfo->max_h_samp_factor * DCTSIZE));
    compptr->height_in_blocks = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
		    (long) (cinfo->max_v_samp_factor * DCTSIZE));
    /* downsampled_width and downsampled_height will also be overridden by
     * jdmaster.c if we are doing full decompression.  The transcoder library
     * doesn't use these values, but the calling application might.
     */
    /* Size in samples */
    compptr->downsampled_width = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
		    (long) cinfo->max_h_samp_factor);
    compptr->downsampled_height = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
		    (long) cinfo->max_v_samp_factor);
    /* Mark component needed, until color conversion says otherwise */
    compptr->component_needed = TRUE;
    /* Mark no quantization table yet saved for component */
    compptr->quant_table = NULL;
  }

  /* Compute number of fully interleaved MCU rows. */
  cinfo->total_iMCU_rows = (JDIMENSION)
    jdiv_round_up((long) cinfo->image_height,
		  (long) (cinfo->max_v_samp_factor*DCTSIZE));

  /* Decide whether file contains multiple scans */
  if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
    cinfo->inputctl->has_multiple_scans = TRUE;
  else
    cinfo->inputctl->has_multiple_scans = FALSE;
}


LOCAL(void)
per_scan_setup (j_decompress_ptr cinfo)
/* Do computations that are needed before processing a JPEG scan */
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
{
  int ci, mcublks, tmp;
  jpeg_component_info *compptr;
  
  if (cinfo->comps_in_scan == 1) {
    
    /* Noninterleaved (single-component) scan */
    compptr = cinfo->cur_comp_info[0];
    
    /* Overall image size in MCUs */
    cinfo->MCUs_per_row = compptr->width_in_blocks;
    cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
    
    /* For noninterleaved scan, always one block per MCU */
    compptr->MCU_width = 1;
    compptr->MCU_height = 1;
    compptr->MCU_blocks = 1;
    compptr->MCU_sample_width = compptr->DCT_scaled_size;
    compptr->last_col_width = 1;
    /* For noninterleaved scans, it is convenient to define last_row_height
     * as the number of block rows present in the last iMCU row.
     */
    tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    if (tmp == 0) tmp = compptr->v_samp_factor;
    compptr->last_row_height = tmp;
    
    /* Prepare array describing MCU composition */
    cinfo->blocks_in_MCU = 1;
    cinfo->MCU_membership[0] = 0;
    
  } else {
    
    /* Interleaved (multi-component) scan */
    if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
      ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
	       MAX_COMPS_IN_SCAN);
    
    /* Overall image size in MCUs */
    cinfo->MCUs_per_row = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_width,
		    (long) (cinfo->max_h_samp_factor*DCTSIZE));
    cinfo->MCU_rows_in_scan = (JDIMENSION)
      jdiv_round_up((long) cinfo->image_height,
		    (long) (cinfo->max_v_samp_factor*DCTSIZE));
    
    cinfo->blocks_in_MCU = 0;
    
    for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
      compptr = cinfo->cur_comp_info[ci];
      /* Sampling factors give # of blocks of component in each MCU */
      compptr->MCU_width = compptr->h_samp_factor;
      compptr->MCU_height = compptr->v_samp_factor;
      compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
      compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
      /* Figure number of non-dummy blocks in last MCU column & row */
      tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
      if (tmp == 0) tmp = compptr->MCU_width;
      compptr->last_col_width = tmp;
      tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
      if (tmp == 0) tmp = compptr->MCU_height;
      compptr->last_row_height = tmp;
      /* Prepare array describing MCU composition */
      mcublks = compptr->MCU_blocks;
      if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
	ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
      while (mcublks-- > 0) {
	cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
      }
    }
    
  }
}


/*
 * Save away a copy of the Q-table referenced by each component present
 * in the current scan, unless already saved during a prior scan.
 *
 * In a multiple-scan JPEG file, the encoder could assign different components
 * the same Q-table slot number, but change table definitions between scans
 * so that each component uses a different Q-table.  (The IJG encoder is not
 * currently capable of doing this, but other encoders might.)  Since we want
 * to be able to dequantize all the components at the end of the file, this
 * means that we have to save away the table actually used for each component.
 * We do this by copying the table at the start of the first scan containing
 * the component.
 * The JPEG spec prohibits the encoder from changing the contents of a Q-table
 * slot between scans of a component using that slot.  If the encoder does so
 * anyway, this decoder will simply use the Q-table values that were current
 * at the start of the first scan for the component.
 *
 * The decompressor output side looks only at the saved quant tables,
 * not at the current Q-table slots.
 */

LOCAL(void)
latch_quant_tables (j_decompress_ptr cinfo)
{
  int ci, qtblno;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtbl;

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    /* No work if we already saved Q-table for this component */
    if (compptr->quant_table != NULL)
      continue;
    /* Make sure specified quantization table is present */
    qtblno = compptr->quant_tbl_no;
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
	cinfo->quant_tbl_ptrs[qtblno] == NULL)
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
    /* OK, save away the quantization table */
    qtbl = (JQUANT_TBL *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(JQUANT_TBL));
    MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
    compptr->quant_table = qtbl;
  }
}


/*
 * Initialize the input modules to read a scan of compressed data.
 * The first call to this is done by jdmaster.c after initializing
 * the entire decompressor (during jpeg_start_decompress).
 * Subsequent calls come from consume_markers, below.
 */

METHODDEF(void)
start_input_pass (j_decompress_ptr cinfo)
{
  per_scan_setup(cinfo);
  latch_quant_tables(cinfo);
  (*cinfo->entropy->start_pass) (cinfo);
  (*cinfo->coef->start_input_pass) (cinfo);
  cinfo->inputctl->consume_input = cinfo->coef->consume_data;
}


/*
 * Finish up after inputting a compressed-data scan.
 * This is called by the coefficient controller after it's read all
 * the expected data of the scan.
 */

METHODDEF(void)
finish_input_pass (j_decompress_ptr cinfo)
{
  cinfo->inputctl->consume_input = consume_markers;
}


/*
 * Read JPEG markers before, between, or after compressed-data scans.
 * Change state as necessary when a new scan is reached.
 * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
 *
 * The consume_input method pointer points either here or to the
 * coefficient controller's consume_data routine, depending on whether
 * we are reading a compressed data segment or inter-segment markers.
 */

METHODDEF(int)
consume_markers (j_decompress_ptr cinfo)
{
  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
  int val;

  if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
    return JPEG_REACHED_EOI;

  val = (*cinfo->marker->read_markers) (cinfo);

  switch (val) {
  case JPEG_REACHED_SOS:	/* Found SOS */
    if (inputctl->inheaders) {	/* 1st SOS */
      initial_setup(cinfo);
      inputctl->inheaders = FALSE;
      /* Note: start_input_pass must be called by jdmaster.c
       * before any more input can be consumed.  jdapimin.c is
       * responsible for enforcing this sequencing.
       */
    } else {			/* 2nd or later SOS marker */
      if (! inputctl->pub.has_multiple_scans)
	ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
      start_input_pass(cinfo);
    }
    break;
  case JPEG_REACHED_EOI:	/* Found EOI */
    inputctl->pub.eoi_reached = TRUE;
    if (inputctl->inheaders) {	/* Tables-only datastream, apparently */
      if (cinfo->marker->saw_SOF)
	ERREXIT(cinfo, JERR_SOF_NO_SOS);
    } else {
      /* Prevent infinite loop in coef ctlr's decompress_data routine
       * if user set output_scan_number larger than number of scans.
       */
      if (cinfo->output_scan_number > cinfo->input_scan_number)
	cinfo->output_scan_number = cinfo->input_scan_number;
    }
    break;
  case JPEG_SUSPENDED:
    break;
  }

  return val;
}


/*
 * Reset state to begin a fresh datastream.
 */

METHODDEF(void)
reset_input_controller (j_decompress_ptr cinfo)
{
  my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;

  inputctl->pub.consume_input = consume_markers;
  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
  inputctl->pub.eoi_reached = FALSE;
  inputctl->inheaders = TRUE;
  /* Reset other modules */
  (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
  (*cinfo->marker->reset_marker_reader) (cinfo);
  /* Reset progression state -- would be cleaner if entropy decoder did this */
  cinfo->coef_bits = NULL;
}


/*
 * Initialize the input controller module.
 * This is called only once, when the decompression object is created.
 */

GLOBAL(void)
jinit_input_controller (j_decompress_ptr cinfo)
{
  my_inputctl_ptr inputctl;

  /* Create subobject in permanent pool */
  inputctl = (my_inputctl_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
				SIZEOF(my_input_controller));
  cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
  /* Initialize method pointers */
  inputctl->pub.consume_input = consume_markers;
  inputctl->pub.reset_input_controller = reset_input_controller;
  inputctl->pub.start_input_pass = start_input_pass;
  inputctl->pub.finish_input_pass = finish_input_pass;
  /* Initialize state: can't use reset_input_controller since we don't
   * want to try to reset other modules yet.
   */
  inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
  inputctl->pub.eoi_reached = FALSE;
  inputctl->inheaders = TRUE;
}

--- NEW FILE: jconfig.doc ---
/*
 * jconfig.doc
 *
 * Copyright (C) 1991-1994, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file documents the configuration options that are required to
 * customize the JPEG software for a particular system.
 *
 * The actual configuration options for a particular installation are stored
 * in jconfig.h.  On many machines, jconfig.h can be generated automatically
 * or copied from one of the "canned" jconfig files that we supply.  But if
 * you need to generate a jconfig.h file by hand, this file tells you how.
 *
 * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING.
 * EDIT A COPY NAMED JCONFIG.H.
 */


/*
 * These symbols indicate the properties of your machine or compiler.
 * #define the symbol if yes, #undef it if no.
 */

/* Does your compiler support function prototypes?
 * (If not, you also need to use ansi2knr, see install.doc)
 */
#define HAVE_PROTOTYPES

/* Does your compiler support the declaration "unsigned char" ?
 * How about "unsigned short" ?
 */
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT

/* Define "void" as "char" if your compiler doesn't know about type void.
 * NOTE: be sure to define void such that "void *" represents the most general
 * pointer type, e.g., that returned by malloc().
 */
/* #define void char */

/* Define "const" as empty if your compiler doesn't know the "const" keyword.
 */
/* #define const */

/* Define this if an ordinary "char" type is unsigned.
 * If you're not sure, leaving it undefined will work at some cost in speed.
 * If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal.
 */
#undef CHAR_IS_UNSIGNED

/* Define this if your system has an ANSI-conforming <stddef.h> file.
 */
#define HAVE_STDDEF_H

/* Define this if your system has an ANSI-conforming <stdlib.h> file.
 */
#define HAVE_STDLIB_H

/* Define this if your system does not have an ANSI/SysV <string.h>,
 * but does have a BSD-style <strings.h>.
 */
#undef NEED_BSD_STRINGS

/* Define this if your system does not provide typedef size_t in any of the
 * ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in
 * <sys/types.h> instead.
 */
#undef NEED_SYS_TYPES_H

/* For 80x86 machines, you need to define NEED_FAR_POINTERS,
 * unless you are using a large-data memory model or 80386 flat-memory mode.
 * On less brain-damaged CPUs this symbol must not be defined.
 * (Defining this symbol causes large data structures to be referenced through
 * "far" pointers and to be allocated with a special version of malloc.)
 */
#undef NEED_FAR_POINTERS

/* Define this if your linker needs global names to be unique in less
 * than the first 15 characters.
 */
#undef NEED_SHORT_EXTERNAL_NAMES

/* Although a real ANSI C compiler can deal perfectly well with pointers to
 * unspecified structures (see "incomplete types" in the spec), a few pre-ANSI
 * and pseudo-ANSI compilers get confused.  To keep one of these bozos happy,
 * define INCOMPLETE_TYPES_BROKEN.  This is not recommended unless you
 * actually get "missing structure definition" warnings or errors while
 * compiling the JPEG code.
 */
#undef INCOMPLETE_TYPES_BROKEN


/*
 * The following options affect code selection within the JPEG library,
 * but they don't need to be visible to applications using the library.
 * To minimize application namespace pollution, the symbols won't be
 * defined unless JPEG_INTERNALS has been defined.
 */

#ifdef JPEG_INTERNALS

/* Define this if your compiler implements ">>" on signed values as a logical
 * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift,
 * which is the normal and rational definition.
 */
#undef RIGHT_SHIFT_IS_UNSIGNED


#endif /* JPEG_INTERNALS */


/*
 * The remaining options do not affect the JPEG library proper,
 * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c).
 * Other applications can ignore these.
 */

#ifdef JPEG_CJPEG_DJPEG

/* These defines indicate which image (non-JPEG) file formats are allowed. */

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

/* Define this if you want to name both input and output files on the command
 * line, rather than using stdout and optionally stdin.  You MUST do this if
 * your system can't cope with binary I/O to stdin/stdout.  See comments at
 * head of cjpeg.c or djpeg.c.
 */
#undef TWO_FILE_COMMANDLINE

/* Define this if your system needs explicit cleanup of temporary files.
 * This is crucial under MS-DOS, where the temporary "files" may be areas
 * of extended memory; on most other systems it's not as important.
 */
#undef NEED_SIGNAL_CATCHER

/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb").
 * This is necessary on systems that distinguish text files from binary files,
 * and is harmless on most systems that don't.  If you have one of the rare
 * systems that complains about the "b" spec, define this symbol.
 */
#undef DONT_USE_B_MODE

/* Define this if you want percent-done progress reports from cjpeg/djpeg.
 */
#undef PROGRESS_REPORT


#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: makefile.unix ---
# Makefile for Independent JPEG Group's software

# This makefile is suitable for Unix-like systems with non-ANSI compilers.
# If you have an ANSI compiler, makefile.ansi is a better starting point.

# Read installation instructions before saying "make" !!

# The name of your C compiler:
CC= cc

# You may need to adjust these cc options:
CFLAGS= -O
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.
# However, any special defines for ansi2knr.c may be included here:
ANSI2KNRFLAGS= 

# Link-time cc options:
LDFLAGS= 

# To link any special libraries, add the necessary -l commands here.
LDLIBS= 

# Put here the object file name for the correct system-dependent memory
# manager file.  For Unix this is usually jmemnobs.o, but you may want
# to use jmemansi.o or jmemname.o if you have limited swap space.
SYSDEPMEM= jmemnobs.o

# miscellaneous OS-dependent stuff
# linker
LN= $(CC)
# file deletion command
RM= rm -f
# file rename command
MV= mv
# library (.a) file creation command
AR= ar rc
# second step in .a creation (use "touch" if not needed)
AR2= ranlib

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.o jcapistd.o jctrans.o jcparam.o jdatadst.o jcinit.o \
        jcmaster.o jcmarker.o jcmainct.o jcprepct.o jccoefct.o jccolor.o \
        jcsample.o jchuff.o jcphuff.o jcdctmgr.o jfdctfst.o jfdctflt.o \
        jfdctint.o
# decompression library object files
DLIBOBJECTS= jdapimin.o jdapistd.o jdtrans.o jdatasrc.o jdmaster.o \
        jdinput.o jdmarker.o jdhuff.o jdphuff.o jdmainct.o jdcoefct.o \
        jdpostct.o jddctmgr.o jidctfst.o jidctflt.o jidctint.o jidctred.o \
        jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
# These objectfiles are included in libjpeg.a
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
        cdjpeg.o
DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
        cdjpeg.o
TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o


all: ansi2knr libjpeg.a cjpeg djpeg jpegtran rdjpgcom wrjpgcom

# This rule causes ansi2knr to be invoked.
.c.o:
	./ansi2knr $*.c T$*.c
	$(CC) $(CFLAGS) -c T$*.c
	$(RM) T$*.c $*.o
	$(MV) T$*.o $*.o

ansi2knr: ansi2knr.c
	$(CC) $(CFLAGS) $(ANSI2KNRFLAGS) -o ansi2knr ansi2knr.c

libjpeg.a: ansi2knr $(LIBOBJECTS)
	$(RM) libjpeg.a
	$(AR) libjpeg.a  $(LIBOBJECTS)
	$(AR2) libjpeg.a

cjpeg: ansi2knr $(COBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.a $(LDLIBS)

djpeg: ansi2knr $(DOBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.a $(LDLIBS)

jpegtran: ansi2knr $(TROBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.a $(LDLIBS)

rdjpgcom: rdjpgcom.o
	$(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.o $(LDLIBS)

wrjpgcom: wrjpgcom.o
	$(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.o $(LDLIBS)

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

clean:
	$(RM) *.o cjpeg djpeg jpegtran libjpeg.a rdjpgcom wrjpgcom
	$(RM) ansi2knr core testout*

test: cjpeg djpeg jpegtran
	$(RM) testout*
	./djpeg -dct int -ppm -outfile testout.ppm  testorig.jpg
	./djpeg -dct int -bmp -colors 256 -outfile testout.bmp  testorig.jpg
	./cjpeg -dct int -outfile testout.jpg  testimg.ppm
	./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
	./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
	./jpegtran -outfile testoutt.jpg testprog.jpg
	cmp testimg.ppm testout.ppm
	cmp testimg.bmp testout.bmp
	cmp testimg.jpg testout.jpg
	cmp testimg.ppm testoutp.ppm
	cmp testimgp.jpg testoutp.jpg
	cmp testorig.jpg testoutt.jpg


jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.o: jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.o: jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.o: jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h

--- NEW FILE: jchuff.h ---
/*
 * jchuff.h
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains declarations for Huffman entropy encoding routines
 * that are shared between the sequential encoder (jchuff.c) and the
 * progressive encoder (jcphuff.c).  No other modules need to see these.
 */

/* The legal range of a DCT coefficient is
 *  -1024 .. +1023  for 8-bit data;
 * -16384 .. +16383 for 12-bit data.
 * Hence the magnitude should always fit in 10 or 14 bits respectively.
 */

#if BITS_IN_JSAMPLE == 8
#define MAX_COEF_BITS 10
#else
#define MAX_COEF_BITS 14
#endif

/* Derived data constructed for each Huffman table */

typedef struct {
  unsigned int ehufco[256];	/* code for each symbol */
  char ehufsi[256];		/* length of code for each symbol */
  /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
} c_derived_tbl;

/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_c_derived_tbl	jMkCDerived
#define jpeg_gen_optimal_table	jGenOptTbl
#endif /* NEED_SHORT_EXTERNAL_NAMES */

/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_c_derived_tbl
	JPP((j_compress_ptr cinfo, boolean isDC, int tblno,
	     c_derived_tbl ** pdtbl));

/* Generate an optimal table definition given the specified counts */
EXTERN(void) jpeg_gen_optimal_table
	JPP((j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]));

--- NEW FILE: wrrle.c ---
/*
 * wrrle.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to write output images in RLE format.
 * The Utah Raster Toolkit library is required (version 3.1 or later).
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume output to
 * an ordinary stdio stream.
 *
 * Based on code contributed by Mike Lijewski,
 * with updates from Robert Hutchinson.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef RLE_SUPPORTED

/* rle.h is provided by the Utah Raster Toolkit. */

#include <rle.h>

/*
 * We assume that JSAMPLE has the same representation as rle_pixel,
 * to wit, "unsigned char".  Hence we can't cope with 12- or 16-bit samples.
 */

#if BITS_IN_JSAMPLE != 8
  Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif


/*
 * Since RLE stores scanlines bottom-to-top, we have to invert the image
 * from JPEG's top-to-bottom order.  To do this, we save the outgoing data
 * in a virtual array during put_pixel_row calls, then actually emit the
 * RLE file during finish_output.
 */


/*
 * For now, if we emit an RLE color map then it is always 256 entries long,
 * though not all of the entries need be used.
 */

#define CMAPBITS	8
#define CMAPLENGTH	(1<<(CMAPBITS))

typedef struct {
  struct djpeg_dest_struct pub; /* public fields */

  jvirt_sarray_ptr image;	/* virtual array to store the output image */
  rle_map *colormap;	 	/* RLE-style color map, or NULL if none */
  rle_pixel **rle_row;		/* To pass rows to rle_putrow() */

} rle_dest_struct;

typedef rle_dest_struct * rle_dest_ptr;

/* Forward declarations */
METHODDEF(void) rle_put_pixel_rows
    JPP((j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
	 JDIMENSION rows_supplied));


/*
 * Write the file header.
 *
 * In this module it's easier to wait till finish_output to write anything.
 */

METHODDEF(void)
start_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  rle_dest_ptr dest = (rle_dest_ptr) dinfo;
  size_t cmapsize;
  int i, ci;
#ifdef PROGRESS_REPORT
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
#endif

  /*
   * Make sure the image can be stored in RLE format.
   *
   * - RLE stores image dimensions as *signed* 16 bit integers.  JPEG
   *   uses unsigned, so we have to check the width.
   *
   * - Colorspace is expected to be grayscale or RGB.
   *
   * - The number of channels (components) is expected to be 1 (grayscale/
   *   pseudocolor) or 3 (truecolor/directcolor).
   *   (could be 2 or 4 if using an alpha channel, but we aren't)
   */

  if (cinfo->output_width > 32767 || cinfo->output_height > 32767)
    ERREXIT2(cinfo, JERR_RLE_DIMENSIONS, cinfo->output_width, 
	     cinfo->output_height);

  if (cinfo->out_color_space != JCS_GRAYSCALE &&
      cinfo->out_color_space != JCS_RGB)
    ERREXIT(cinfo, JERR_RLE_COLORSPACE);

  if (cinfo->output_components != 1 && cinfo->output_components != 3)
    ERREXIT1(cinfo, JERR_RLE_TOOMANYCHANNELS, cinfo->num_components);

  /* Convert colormap, if any, to RLE format. */

  dest->colormap = NULL;

  if (cinfo->quantize_colors) {
    /* Allocate storage for RLE-style cmap, zero any extra entries */
    cmapsize = cinfo->out_color_components * CMAPLENGTH * SIZEOF(rle_map);
    dest->colormap = (rle_map *) (*cinfo->mem->alloc_small)
      ((j_common_ptr) cinfo, JPOOL_IMAGE, cmapsize);
    MEMZERO(dest->colormap, cmapsize);

    /* Save away data in RLE format --- note 8-bit left shift! */
    /* Shifting would need adjustment for JSAMPLEs wider than 8 bits. */
    for (ci = 0; ci < cinfo->out_color_components; ci++) {
      for (i = 0; i < cinfo->actual_number_of_colors; i++) {
        dest->colormap[ci * CMAPLENGTH + i] =
          GETJSAMPLE(cinfo->colormap[ci][i]) << 8;
      }
    }
  }

  /* Set the output buffer to the first row */
  dest->pub.buffer = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, dest->image, (JDIMENSION) 0, (JDIMENSION) 1, TRUE);
  dest->pub.buffer_height = 1;

  dest->pub.put_pixel_rows = rle_put_pixel_rows;

#ifdef PROGRESS_REPORT
  if (progress != NULL) {
    progress->total_extra_passes++;  /* count file writing as separate pass */
  }
#endif
}


/*
 * Write some pixel data.
 *
 * This routine just saves the data away in a virtual array.
 */

METHODDEF(void)
rle_put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		    JDIMENSION rows_supplied)
{
  rle_dest_ptr dest = (rle_dest_ptr) dinfo;

  if (cinfo->output_scanline < cinfo->output_height) {
    dest->pub.buffer = (*cinfo->mem->access_virt_sarray)
      ((j_common_ptr) cinfo, dest->image,
       cinfo->output_scanline, (JDIMENSION) 1, TRUE);
  }
}

/*
 * Finish up at the end of the file.
 *
 * Here is where we really output the RLE file.
 */

METHODDEF(void)
finish_output_rle (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  rle_dest_ptr dest = (rle_dest_ptr) dinfo;
  rle_hdr header;		/* Output file information */
  rle_pixel **rle_row, *red, *green, *blue;
  JSAMPROW output_row;
  char cmapcomment[80];
  int row, col;
  int ci;
#ifdef PROGRESS_REPORT
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
#endif

  /* Initialize the header info */
  header = *rle_hdr_init(NULL);
  header.rle_file = dest->pub.output_file;
  header.xmin     = 0;
  header.xmax     = cinfo->output_width  - 1;
  header.ymin     = 0;
  header.ymax     = cinfo->output_height - 1;
  header.alpha    = 0;
  header.ncolors  = cinfo->output_components;
  for (ci = 0; ci < cinfo->output_components; ci++) {
    RLE_SET_BIT(header, ci);
  }
  if (cinfo->quantize_colors) {
    header.ncmap   = cinfo->out_color_components;
    header.cmaplen = CMAPBITS;
    header.cmap    = dest->colormap;
    /* Add a comment to the output image with the true colormap length. */
    sprintf(cmapcomment, "color_map_length=%d", cinfo->actual_number_of_colors);
    rle_putcom(cmapcomment, &header);
  }

  /* Emit the RLE header and color map (if any) */
  rle_put_setup(&header);

  /* Now output the RLE data from our virtual array.
   * We assume here that (a) rle_pixel is represented the same as JSAMPLE,
   * and (b) we are not on a machine where FAR pointers differ from regular.
   */

#ifdef PROGRESS_REPORT
  if (progress != NULL) {
    progress->pub.pass_limit = cinfo->output_height;
    progress->pub.pass_counter = 0;
    (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
  }
#endif

  if (cinfo->output_components == 1) {
    for (row = cinfo->output_height-1; row >= 0; row--) {
      rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray)
        ((j_common_ptr) cinfo, dest->image,
	 (JDIMENSION) row, (JDIMENSION) 1, FALSE);
      rle_putrow(rle_row, (int) cinfo->output_width, &header);
#ifdef PROGRESS_REPORT
      if (progress != NULL) {
        progress->pub.pass_counter++;
        (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
      }
#endif
    }
  } else {
    for (row = cinfo->output_height-1; row >= 0; row--) {
      rle_row = (rle_pixel **) dest->rle_row;
      output_row = * (*cinfo->mem->access_virt_sarray)
        ((j_common_ptr) cinfo, dest->image,
	 (JDIMENSION) row, (JDIMENSION) 1, FALSE);
      red = rle_row[0];
      green = rle_row[1];
      blue = rle_row[2];
      for (col = cinfo->output_width; col > 0; col--) {
        *red++ = GETJSAMPLE(*output_row++);
        *green++ = GETJSAMPLE(*output_row++);
        *blue++ = GETJSAMPLE(*output_row++);
      }
      rle_putrow(rle_row, (int) cinfo->output_width, &header);
#ifdef PROGRESS_REPORT
      if (progress != NULL) {
        progress->pub.pass_counter++;
        (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
      }
#endif
    }
  }

#ifdef PROGRESS_REPORT
  if (progress != NULL)
    progress->completed_extra_passes++;
#endif

  /* Emit file trailer */
  rle_puteof(&header);
  fflush(dest->pub.output_file);
  if (ferror(dest->pub.output_file))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * The module selection routine for RLE format output.
 */

GLOBAL(djpeg_dest_ptr)
jinit_write_rle (j_decompress_ptr cinfo)
{
  rle_dest_ptr dest;

  /* Create module interface object, fill in method pointers */
  dest = (rle_dest_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  SIZEOF(rle_dest_struct));
  dest->pub.start_output = start_output_rle;
  dest->pub.finish_output = finish_output_rle;

  /* Calculate output image dimensions so we can allocate space */
  jpeg_calc_output_dimensions(cinfo);

  /* Allocate a work array for output to the RLE library. */
  dest->rle_row = (*cinfo->mem->alloc_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
     cinfo->output_width, (JDIMENSION) cinfo->output_components);

  /* Allocate a virtual array to hold the image. */
  dest->image = (*cinfo->mem->request_virt_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
     (JDIMENSION) (cinfo->output_width * cinfo->output_components),
     cinfo->output_height, (JDIMENSION) 1);

  return (djpeg_dest_ptr) dest;
}

#endif /* RLE_SUPPORTED */

--- NEW FILE: jconfig.manx ---
/* jconfig.manx --- jconfig.h for Amiga systems using Manx Aztec C ver 5.x. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#define TEMP_DIRECTORY "JPEGTMP:"	/* recommended setting for Amiga */

#define SHORTxSHORT_32		/* produces better DCT code with Aztec C */

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define TWO_FILE_COMMANDLINE
#define NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#define signal_catcher _abort	/* hack for Aztec C naming requirements */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: jpegtran.1 ---
.TH JPEGTRAN 1 "3 August 1997"
.SH NAME
jpegtran \- lossless transformation of JPEG files
.SH SYNOPSIS
.B jpegtran
[
.I options
]
[
.I filename
]
.LP
.SH DESCRIPTION
.LP
.B jpegtran
performs various useful transformations of JPEG files.
It can translate the coded representation from one variant of JPEG to another,
for example from baseline JPEG to progressive JPEG or vice versa.  It can also
perform some rearrangements of the image data, for example turning an image
from landscape to portrait format by rotation.
.PP
.B jpegtran
works by rearranging the compressed data (DCT coefficients), without
ever fully decoding the image.  Therefore, its transformations are lossless:
there is no image degradation at all, which would not be true if you used
.B djpeg
followed by
.B cjpeg
to accomplish the same conversion.  But by the same token,
.B jpegtran
cannot perform lossy operations such as changing the image quality.
.PP
.B jpegtran
reads the named JPEG/JFIF file, or the standard input if no file is
named, and produces a JPEG/JFIF file on the standard output.
.SH OPTIONS
All switch names may be abbreviated; for example,
.B \-optimize
may be written
.B \-opt
or
.BR \-o .
Upper and lower case are equivalent.
British spellings are also accepted (e.g.,
.BR \-optimise ),
though for brevity these are not mentioned below.
.PP
To specify the coded JPEG representation used in the output file,
.B jpegtran
accepts a subset of the switches recognized by
.BR cjpeg :
.TP
.B \-optimize
Perform optimization of entropy encoding parameters.
.TP
.B \-progressive
Create progressive JPEG file.
.TP
.BI \-restart " N"
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
attached to the number.
.TP
.BI \-scans " file"
Use the scan script given in the specified text file.
.PP
See
.BR cjpeg (1)
for more details about these switches.
If you specify none of these switches, you get a plain baseline-JPEG output
file.  The quality setting and so forth are determined by the input file.
.PP
The image can be losslessly transformed by giving one of these switches:
.TP
.B \-flip horizontal
Mirror image horizontally (left-right).
.TP
.B \-flip vertical
Mirror image vertically (top-bottom).
.TP
.B \-rotate 90
Rotate image 90 degrees clockwise.
.TP
.B \-rotate 180
Rotate image 180 degrees.
.TP
.B \-rotate 270
Rotate image 270 degrees clockwise (or 90 ccw).
.TP
.B \-transpose
Transpose image (across UL-to-LR axis).
.TP
.B \-transverse
Transverse transpose (across UR-to-LL axis).
.PP
The transpose transformation has no restrictions regarding image dimensions.
The other transformations operate rather oddly if the image dimensions are not
a multiple of the iMCU size (usually 8 or 16 pixels), because they can only
transform complete blocks of DCT coefficient data in the desired way.
.PP
.BR jpegtran 's
default behavior when transforming an odd-size image is designed
to preserve exact reversibility and mathematical consistency of the
transformation set.  As stated, transpose is able to flip the entire image
area.  Horizontal mirroring leaves any partial iMCU column at the right edge
untouched, but is able to flip all rows of the image.  Similarly, vertical
mirroring leaves any partial iMCU row at the bottom edge untouched, but is
able to flip all columns.  The other transforms can be built up as sequences
of transpose and flip operations; for consistency, their actions on edge
pixels are defined to be the same as the end result of the corresponding
transpose-and-flip sequence.
.PP
For practical use, you may prefer to discard any untransformable edge pixels
rather than having a strange-looking strip along the right and/or bottom edges
of a transformed image.  To do this, add the
.B \-trim
switch:
.TP
.B \-trim
Drop non-transformable edge blocks.
.PP
Obviously, a transformation with
.B \-trim
is not reversible, so strictly speaking
.B jpegtran
with this switch is not lossless.  Also, the expected mathematical
equivalences between the transformations no longer hold.  For example,
.B \-rot 270 -trim
trims only the bottom edge, but
.B \-rot 90 -trim
followed by
.B \-rot 180 -trim
trims both edges.
.PP
Another not-strictly-lossless transformation switch is:
.TP
.B \-grayscale
Force grayscale output.
.PP
This option discards the chrominance channels if the input image is YCbCr
(ie, a standard color JPEG), resulting in a grayscale JPEG file.  The
luminance channel is preserved exactly, so this is a better method of reducing
to grayscale than decompression, conversion, and recompression.  This switch
is particularly handy for fixing a monochrome picture that was mistakenly
encoded as a color JPEG.  (In such a case, the space savings from getting rid
of the near-empty chroma channels won't be large; but the decoding time for
a grayscale JPEG is substantially less than that for a color JPEG.)
.PP
.B jpegtran
also recognizes these switches that control what to do with "extra" markers,
such as comment blocks:
.TP
.B \-copy none
Copy no extra markers from source file.  This setting suppresses all
comments and other excess baggage present in the source file.
.TP
.B \-copy comments
Copy only comment markers.  This setting copies comments from the source file,
but discards any other inessential data.
.TP
.B \-copy all
Copy all extra markers.  This setting preserves miscellaneous markers
found in the source file, such as JFIF thumbnails and Photoshop settings.
In some files these extra markers can be sizable.
.PP
The default behavior is
.BR "\-copy comments" .
(Note: in IJG releases v6 and v6a,
.B jpegtran
always did the equivalent of
.BR "\-copy none" .)
.PP
Additional switches recognized by jpegtran are:
.TP
.BI \-maxmemory " N"
Set limit for amount of memory to use in processing large images.  Value is
in thousands of bytes, or millions of bytes if "M" is attached to the
number.  For example,
.B \-max 4m
selects 4000000 bytes.  If more space is needed, temporary files will be used.
.TP
.BI \-outfile " name"
Send output image to the named file, not to standard output.
.TP
.B \-verbose
Enable debug printout.  More
.BR \-v 's
give more output.  Also, version information is printed at startup.
.TP
.B \-debug
Same as
.BR \-verbose .
.SH EXAMPLES
.LP
This example converts a baseline JPEG file to progressive form:
.IP
.B jpegtran \-progressive
.I foo.jpg
.B >
.I fooprog.jpg
.PP
This example rotates an image 90 degrees clockwise, discarding any
unrotatable edge pixels:
.IP
.B jpegtran \-rot 90 -trim
.I foo.jpg
.B >
.I foo90.jpg
.SH ENVIRONMENT
.TP
.B JPEGMEM
If this environment variable is set, its value is the default memory limit.
The value is specified as described for the
.B \-maxmemory
switch.
.B JPEGMEM
overrides the default value specified when the program was compiled, and
itself is overridden by an explicit
.BR \-maxmemory .
.SH SEE ALSO
.BR cjpeg (1),
.BR djpeg (1),
.BR rdjpgcom (1),
.BR wrjpgcom (1)
.br
Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
.SH AUTHOR
Independent JPEG Group
.SH BUGS
Arithmetic coding is not supported for legal reasons.
.PP
The transform options can't transform odd-size images perfectly.  Use
.B \-trim
if you don't like the results without it.
.PP
The entire image is read into memory and then written out again, even in
cases where this isn't really necessary.  Expect swapping on large images,
especially when using the more complex transform options.

--- NEW FILE: rdjpgcom.1 ---
.TH RDJPGCOM 1 "11 October 1997"
.SH NAME
rdjpgcom \- display text comments from a JPEG file
.SH SYNOPSIS
.B rdjpgcom
[
.B \-verbose
]
[
.I filename
]
.LP
.SH DESCRIPTION
.LP
.B rdjpgcom
reads the named JPEG/JFIF file, or the standard input if no file is named,
and prints any text comments found in the file on the standard output.
.PP
The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
Although the standard doesn't actually define what COM blocks are for, they
are widely used to hold user-supplied text strings.  This lets you add
annotations, titles, index terms, etc to your JPEG files, and later retrieve
them as text.  COM blocks do not interfere with the image stored in the JPEG
file.  The maximum size of a COM block is 64K, but you can have as many of
them as you like in one JPEG file.
.SH OPTIONS
.TP
.B \-verbose
Causes
.B rdjpgcom
to also display the JPEG image dimensions.
.PP
Switch names may be abbreviated, and are not case sensitive.
.SH HINTS
.B rdjpgcom
does not depend on the IJG JPEG library.  Its source code is intended as an
illustration of the minimum amount of code required to parse a JPEG file
header correctly.
.PP
In
.B \-verbose
mode,
.B rdjpgcom
will also attempt to print the contents of any "APP12" markers as text.
Some digital cameras produce APP12 markers containing useful textual
information.  If you like, you can modify the source code to print
other APPn marker types as well.
.SH SEE ALSO
.BR cjpeg (1),
.BR djpeg (1),
.BR jpegtran (1),
.BR wrjpgcom (1)
.SH AUTHOR
Independent JPEG Group

--- NEW FILE: jconfig.vms ---
/* jconfig.vms --- jconfig.h for use on Digital VMS. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define TWO_FILE_COMMANDLINE	/* Needed on VMS */
#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: testimgp.jpg ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: jdmarker.c ---
/*
 * jdmarker.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to decode JPEG datastream markers.
 * Most of the complexity arises from our desire to support input
 * suspension: if not all of the data for a marker is available,
 * we must exit back to the application.  On resumption, we reprocess
 * the marker.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


[...1321 lines suppressed...]
#endif /* SAVE_MARKERS_SUPPORTED */


/*
 * Install a special processing method for COM or APPn markers.
 */

GLOBAL(void)
jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
			   jpeg_marker_parser_method routine)
{
  my_marker_ptr marker = (my_marker_ptr) cinfo->marker;

  if (marker_code == (int) M_COM)
    marker->process_COM = routine;
  else if (marker_code >= (int) M_APP0 && marker_code <= (int) M_APP15)
    marker->process_APPn[marker_code - (int) M_APP0] = routine;
  else
    ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
}

--- NEW FILE: testorig.jpg ---
(This appears to be a binary file; contents omitted.)

--- NEW FILE: rdppm.c ---
/*
 * rdppm.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to read input images in PPM/PGM format.
 * The extended 2-byte-per-sample raw PPM/PGM formats are supported.
 * The PBMPLUS library is NOT required to compile this software
 * (but it is highly useful as a set of PPM image manipulation programs).
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume input from
 * an ordinary stdio stream.  They further assume that reading begins
 * at the start of the file; start_input may need work if the
 * user interface has already read some data (e.g., to determine that
 * the file is indeed PPM format).
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef PPM_SUPPORTED


/* Portions of this code are based on the PBMPLUS library, which is:
**
** Copyright (C) 1988 by Jef Poskanzer.
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation.  This software is provided "as is" without express or
** implied warranty.
*/


/* Macros to deal with unsigned chars as efficiently as compiler allows */

#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char U_CHAR;
#define UCH(x)	((int) (x))
#else /* !HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char U_CHAR;
#define UCH(x)	((int) (x))
#else
typedef char U_CHAR;
#define UCH(x)	((int) (x) & 0xFF)
#endif
#endif /* HAVE_UNSIGNED_CHAR */


#define	ReadOK(file,buffer,len)	(JFREAD(file,buffer,len) == ((size_t) (len)))


/*
 * On most systems, reading individual bytes with getc() is drastically less
 * efficient than buffering a row at a time with fread().  On PCs, we must
 * allocate the buffer in near data space, because we are assuming small-data
 * memory model, wherein fread() can't reach far memory.  If you need to
 * process very wide images on a PC, you might have to compile in large-memory
 * model, or else replace fread() with a getc() loop --- which will be much
 * slower.
 */


/* Private version of data source object */

typedef struct {
  struct cjpeg_source_struct pub; /* public fields */

  U_CHAR *iobuffer;		/* non-FAR pointer to I/O buffer */
  JSAMPROW pixrow;		/* FAR pointer to same */
  size_t buffer_width;		/* width of I/O buffer */
  JSAMPLE *rescale;		/* => maxval-remapping array, or NULL */
} ppm_source_struct;

typedef ppm_source_struct * ppm_source_ptr;


LOCAL(int)
pbm_getc (FILE * infile)
/* Read next char, skipping over any comments */
/* A comment/newline sequence is returned as a newline */
{
  register int ch;

  ch = getc(infile);
  if (ch == '#') {
    do {
      ch = getc(infile);
    } while (ch != '\n' && ch != EOF);
  }
  return ch;
}


LOCAL(unsigned int)
read_pbm_integer (j_compress_ptr cinfo, FILE * infile)
/* Read an unsigned decimal integer from the PPM file */
/* Swallows one trailing character after the integer */
/* Note that on a 16-bit-int machine, only values up to 64k can be read. */
/* This should not be a problem in practice. */
{
  register int ch;
  register unsigned int val;

  /* Skip any leading whitespace */
  do {
    ch = pbm_getc(infile);
    if (ch == EOF)
      ERREXIT(cinfo, JERR_INPUT_EOF);
  } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r');

  if (ch < '0' || ch > '9')
    ERREXIT(cinfo, JERR_PPM_NONNUMERIC);

  val = ch - '0';
  while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') {
    val *= 10;
    val += ch - '0';
  }
  return val;
}


/*
 * Read one row of pixels.
 *
 * We provide several different versions depending on input file format.
 * In all cases, input is scaled to the size of JSAMPLE.
 *
 * A really fast path is provided for reading byte/sample raw files with
 * maxval = MAXJSAMPLE, which is the normal case for 8-bit data.
 */


METHODDEF(JDIMENSION)
get_text_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading text-format PGM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  FILE * infile = source->pub.input_file;
  register JSAMPROW ptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
  }
  return 1;
}


METHODDEF(JDIMENSION)
get_text_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading text-format PPM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  FILE * infile = source->pub.input_file;
  register JSAMPROW ptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
    *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
    *ptr++ = rescale[read_pbm_integer(cinfo, infile)];
  }
  return 1;
}


METHODDEF(JDIMENSION)
get_scaled_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-byte-format PGM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  register JSAMPROW ptr;
  register U_CHAR * bufferptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  ptr = source->pub.buffer[0];
  bufferptr = source->iobuffer;
  for (col = cinfo->image_width; col > 0; col--) {
    *ptr++ = rescale[UCH(*bufferptr++)];
  }
  return 1;
}


METHODDEF(JDIMENSION)
get_scaled_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-byte-format PPM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  register JSAMPROW ptr;
  register U_CHAR * bufferptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  ptr = source->pub.buffer[0];
  bufferptr = source->iobuffer;
  for (col = cinfo->image_width; col > 0; col--) {
    *ptr++ = rescale[UCH(*bufferptr++)];
    *ptr++ = rescale[UCH(*bufferptr++)];
    *ptr++ = rescale[UCH(*bufferptr++)];
  }
  return 1;
}


METHODDEF(JDIMENSION)
get_raw_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-byte-format files with maxval = MAXJSAMPLE.
 * In this case we just read right into the JSAMPLE buffer!
 * Note that same code works for PPM and PGM files.
 */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;

  if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  return 1;
}


METHODDEF(JDIMENSION)
get_word_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-word-format PGM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  register JSAMPROW ptr;
  register U_CHAR * bufferptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  ptr = source->pub.buffer[0];
  bufferptr = source->iobuffer;
  for (col = cinfo->image_width; col > 0; col--) {
    register int temp;
    temp  = UCH(*bufferptr++);
    temp |= UCH(*bufferptr++) << 8;
    *ptr++ = rescale[temp];
  }
  return 1;
}


METHODDEF(JDIMENSION)
get_word_rgb_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-word-format PPM files with any maxval */
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  register JSAMPROW ptr;
  register U_CHAR * bufferptr;
  register JSAMPLE *rescale = source->rescale;
  JDIMENSION col;

  if (! ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  ptr = source->pub.buffer[0];
  bufferptr = source->iobuffer;
  for (col = cinfo->image_width; col > 0; col--) {
    register int temp;
    temp  = UCH(*bufferptr++);
    temp |= UCH(*bufferptr++) << 8;
    *ptr++ = rescale[temp];
    temp  = UCH(*bufferptr++);
    temp |= UCH(*bufferptr++) << 8;
    *ptr++ = rescale[temp];
    temp  = UCH(*bufferptr++);
    temp |= UCH(*bufferptr++) << 8;
    *ptr++ = rescale[temp];
  }
  return 1;
}


/*
 * Read the file header; return image size and component count.
 */

METHODDEF(void)
start_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  ppm_source_ptr source = (ppm_source_ptr) sinfo;
  int c;
  unsigned int w, h, maxval;
  boolean need_iobuffer, use_raw_buffer, need_rescale;

  if (getc(source->pub.input_file) != 'P')
    ERREXIT(cinfo, JERR_PPM_NOT);

  c = getc(source->pub.input_file); /* subformat discriminator character */

  /* detect unsupported variants (ie, PBM) before trying to read header */
  switch (c) {
  case '2':			/* it's a text-format PGM file */
  case '3':			/* it's a text-format PPM file */
  case '5':			/* it's a raw-format PGM file */
  case '6':			/* it's a raw-format PPM file */
    break;
  default:
    ERREXIT(cinfo, JERR_PPM_NOT);
    break;
  }

  /* fetch the remaining header info */
  w = read_pbm_integer(cinfo, source->pub.input_file);
  h = read_pbm_integer(cinfo, source->pub.input_file);
  maxval = read_pbm_integer(cinfo, source->pub.input_file);

  if (w <= 0 || h <= 0 || maxval <= 0) /* error check */
    ERREXIT(cinfo, JERR_PPM_NOT);

  cinfo->data_precision = BITS_IN_JSAMPLE; /* we always rescale data to this */
  cinfo->image_width = (JDIMENSION) w;
  cinfo->image_height = (JDIMENSION) h;

  /* initialize flags to most common settings */
  need_iobuffer = TRUE;		/* do we need an I/O buffer? */
  use_raw_buffer = FALSE;	/* do we map input buffer onto I/O buffer? */
  need_rescale = TRUE;		/* do we need a rescale array? */

  switch (c) {
  case '2':			/* it's a text-format PGM file */
    cinfo->input_components = 1;
    cinfo->in_color_space = JCS_GRAYSCALE;
    TRACEMS2(cinfo, 1, JTRC_PGM_TEXT, w, h);
    source->pub.get_pixel_rows = get_text_gray_row;
    need_iobuffer = FALSE;
    break;

  case '3':			/* it's a text-format PPM file */
    cinfo->input_components = 3;
    cinfo->in_color_space = JCS_RGB;
    TRACEMS2(cinfo, 1, JTRC_PPM_TEXT, w, h);
    source->pub.get_pixel_rows = get_text_rgb_row;
    need_iobuffer = FALSE;
    break;

  case '5':			/* it's a raw-format PGM file */
    cinfo->input_components = 1;
    cinfo->in_color_space = JCS_GRAYSCALE;
    TRACEMS2(cinfo, 1, JTRC_PGM, w, h);
    if (maxval > 255) {
      source->pub.get_pixel_rows = get_word_gray_row;
    } else if (maxval == MAXJSAMPLE && SIZEOF(JSAMPLE) == SIZEOF(U_CHAR)) {
      source->pub.get_pixel_rows = get_raw_row;
      use_raw_buffer = TRUE;
      need_rescale = FALSE;
    } else {
      source->pub.get_pixel_rows = get_scaled_gray_row;
    }
    break;

  case '6':			/* it's a raw-format PPM file */
    cinfo->input_components = 3;
    cinfo->in_color_space = JCS_RGB;
    TRACEMS2(cinfo, 1, JTRC_PPM, w, h);
    if (maxval > 255) {
      source->pub.get_pixel_rows = get_word_rgb_row;
    } else if (maxval == MAXJSAMPLE && SIZEOF(JSAMPLE) == SIZEOF(U_CHAR)) {
      source->pub.get_pixel_rows = get_raw_row;
      use_raw_buffer = TRUE;
      need_rescale = FALSE;
    } else {
      source->pub.get_pixel_rows = get_scaled_rgb_row;
    }
    break;
  }

  /* Allocate space for I/O buffer: 1 or 3 bytes or words/pixel. */
  if (need_iobuffer) {
    source->buffer_width = (size_t) w * cinfo->input_components *
      ((maxval<=255) ? SIZEOF(U_CHAR) : (2*SIZEOF(U_CHAR)));
    source->iobuffer = (U_CHAR *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  source->buffer_width);
  }

  /* Create compressor input buffer. */
  if (use_raw_buffer) {
    /* For unscaled raw-input case, we can just map it onto the I/O buffer. */
    /* Synthesize a JSAMPARRAY pointer structure */
    /* Cast here implies near->far pointer conversion on PCs */
    source->pixrow = (JSAMPROW) source->iobuffer;
    source->pub.buffer = & source->pixrow;
    source->pub.buffer_height = 1;
  } else {
    /* Need to translate anyway, so make a separate sample buffer. */
    source->pub.buffer = (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       (JDIMENSION) w * cinfo->input_components, (JDIMENSION) 1);
    source->pub.buffer_height = 1;
  }

  /* Compute the rescaling array if required. */
  if (need_rescale) {
    INT32 val, half_maxval;

    /* On 16-bit-int machines we have to be careful of maxval = 65535 */
    source->rescale = (JSAMPLE *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  (size_t) (((long) maxval + 1L) * SIZEOF(JSAMPLE)));
    half_maxval = maxval / 2;
    for (val = 0; val <= (INT32) maxval; val++) {
      /* The multiplication here must be done in 32 bits to avoid overflow */
      source->rescale[val] = (JSAMPLE) ((val*MAXJSAMPLE + half_maxval)/maxval);
    }
  }
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_input_ppm (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  /* no work */
}


/*
 * The module selection routine for PPM format input.
 */

GLOBAL(cjpeg_source_ptr)
jinit_read_ppm (j_compress_ptr cinfo)
{
  ppm_source_ptr source;

  /* Create module interface object */
  source = (ppm_source_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(ppm_source_struct));
  /* Fill in method ptrs, except get_pixel_rows which start_input sets */
  source->pub.start_input = start_input_ppm;
  source->pub.finish_input = finish_input_ppm;

  return (cjpeg_source_ptr) source;
}

#endif /* PPM_SUPPORTED */

--- NEW FILE: rdtarga.c ---
/*
 * rdtarga.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to read input images in Targa format.
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume input from
 * an ordinary stdio stream.  They further assume that reading begins
 * at the start of the file; start_input may need work if the
 * user interface has already read some data (e.g., to determine that
 * the file is indeed Targa format).
 *
 * Based on code contributed by Lee Daniel Crocker.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef TARGA_SUPPORTED


/* Macros to deal with unsigned chars as efficiently as compiler allows */

#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char U_CHAR;
#define UCH(x)	((int) (x))
#else /* !HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char U_CHAR;
#define UCH(x)	((int) (x))
#else
typedef char U_CHAR;
#define UCH(x)	((int) (x) & 0xFF)
#endif
#endif /* HAVE_UNSIGNED_CHAR */


#define	ReadOK(file,buffer,len)	(JFREAD(file,buffer,len) == ((size_t) (len)))


/* Private version of data source object */

typedef struct _tga_source_struct * tga_source_ptr;

typedef struct _tga_source_struct {
  struct cjpeg_source_struct pub; /* public fields */

  j_compress_ptr cinfo;		/* back link saves passing separate parm */

  JSAMPARRAY colormap;		/* Targa colormap (converted to my format) */

  jvirt_sarray_ptr whole_image;	/* Needed if funny input row order */
  JDIMENSION current_row;	/* Current logical row number to read */

  /* Pointer to routine to extract next Targa pixel from input file */
  JMETHOD(void, read_pixel, (tga_source_ptr sinfo));

  /* Result of read_pixel is delivered here: */
  U_CHAR tga_pixel[4];

  int pixel_size;		/* Bytes per Targa pixel (1 to 4) */

  /* State info for reading RLE-coded pixels; both counts must be init to 0 */
  int block_count;		/* # of pixels remaining in RLE block */
  int dup_pixel_count;		/* # of times to duplicate previous pixel */

  /* This saves the correct pixel-row-expansion method for preload_image */
  JMETHOD(JDIMENSION, get_pixel_rows, (j_compress_ptr cinfo,
				       cjpeg_source_ptr sinfo));
} tga_source_struct;


/* For expanding 5-bit pixel values to 8-bit with best rounding */

static const UINT8 c5to8bits[32] = {
    0,   8,  16,  25,  33,  41,  49,  58,
   66,  74,  82,  90,  99, 107, 115, 123,
  132, 140, 148, 156, 165, 173, 181, 189,
  197, 206, 214, 222, 230, 239, 247, 255
};



LOCAL(int)
read_byte (tga_source_ptr sinfo)
/* Read next byte from Targa file */
{
  register FILE *infile = sinfo->pub.input_file;
  register int c;

  if ((c = getc(infile)) == EOF)
    ERREXIT(sinfo->cinfo, JERR_INPUT_EOF);
  return c;
}


LOCAL(void)
read_colormap (tga_source_ptr sinfo, int cmaplen, int mapentrysize)
/* Read the colormap from a Targa file */
{
  int i;

  /* Presently only handles 24-bit BGR format */
  if (mapentrysize != 24)
    ERREXIT(sinfo->cinfo, JERR_TGA_BADCMAP);

  for (i = 0; i < cmaplen; i++) {
    sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
    sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
    sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
  }
}


/*
 * read_pixel methods: get a single pixel from Targa file into tga_pixel[]
 */

METHODDEF(void)
read_non_rle_pixel (tga_source_ptr sinfo)
/* Read one Targa pixel from the input file; no RLE expansion */
{
  register FILE *infile = sinfo->pub.input_file;
  register int i;

  for (i = 0; i < sinfo->pixel_size; i++) {
    sinfo->tga_pixel[i] = (U_CHAR) getc(infile);
  }
}


METHODDEF(void)
read_rle_pixel (tga_source_ptr sinfo)
/* Read one Targa pixel from the input file, expanding RLE data as needed */
{
  register FILE *infile = sinfo->pub.input_file;
  register int i;

  /* Duplicate previously read pixel? */
  if (sinfo->dup_pixel_count > 0) {
    sinfo->dup_pixel_count--;
    return;
  }

  /* Time to read RLE block header? */
  if (--sinfo->block_count < 0) { /* decrement pixels remaining in block */
    i = read_byte(sinfo);
    if (i & 0x80) {		/* Start of duplicate-pixel block? */
      sinfo->dup_pixel_count = i & 0x7F; /* number of dups after this one */
      sinfo->block_count = 0;	/* then read new block header */
    } else {
      sinfo->block_count = i & 0x7F; /* number of pixels after this one */
    }
  }

  /* Read next pixel */
  for (i = 0; i < sinfo->pixel_size; i++) {
    sinfo->tga_pixel[i] = (U_CHAR) getc(infile);
  }
}


/*
 * Read one row of pixels.
 *
 * We provide several different versions depending on input file format.
 */


METHODDEF(JDIMENSION)
get_8bit_gray_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 8-bit grayscale pixels */
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  register JSAMPROW ptr;
  register JDIMENSION col;
  
  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
    *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]);
  }
  return 1;
}

METHODDEF(JDIMENSION)
get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 8-bit colormap indexes */
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  register int t;
  register JSAMPROW ptr;
  register JDIMENSION col;
  register JSAMPARRAY colormap = source->colormap;

  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
    t = UCH(source->tga_pixel[0]);
    *ptr++ = colormap[0][t];
    *ptr++ = colormap[1][t];
    *ptr++ = colormap[2][t];
  }
  return 1;
}

METHODDEF(JDIMENSION)
get_16bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 16-bit pixels */
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  register int t;
  register JSAMPROW ptr;
  register JDIMENSION col;
  
  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
    t = UCH(source->tga_pixel[0]);
    t += UCH(source->tga_pixel[1]) << 8;
    /* We expand 5 bit data to 8 bit sample width.
     * The format of the 16-bit (LSB first) input word is
     *     xRRRRRGGGGGBBBBB
     */
    ptr[2] = (JSAMPLE) c5to8bits[t & 0x1F];
    t >>= 5;
    ptr[1] = (JSAMPLE) c5to8bits[t & 0x1F];
    t >>= 5;
    ptr[0] = (JSAMPLE) c5to8bits[t & 0x1F];
    ptr += 3;
  }
  return 1;
}

METHODDEF(JDIMENSION)
get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 24-bit pixels */
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  register JSAMPROW ptr;
  register JDIMENSION col;
  
  ptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    (*source->read_pixel) (source); /* Load next pixel into tga_pixel */
    *ptr++ = (JSAMPLE) UCH(source->tga_pixel[2]); /* change BGR to RGB order */
    *ptr++ = (JSAMPLE) UCH(source->tga_pixel[1]);
    *ptr++ = (JSAMPLE) UCH(source->tga_pixel[0]);
  }
  return 1;
}

/*
 * Targa also defines a 32-bit pixel format with order B,G,R,A.
 * We presently ignore the attribute byte, so the code for reading
 * these pixels is identical to the 24-bit routine above.
 * This works because the actual pixel length is only known to read_pixel.
 */

#define get_32bit_row  get_24bit_row


/*
 * This method is for re-reading the input data in standard top-down
 * row order.  The entire image has already been read into whole_image
 * with proper conversion of pixel format, but it's in a funny row order.
 */

METHODDEF(JDIMENSION)
get_memory_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  JDIMENSION source_row;

  /* Compute row of source that maps to current_row of normal order */
  /* For now, assume image is bottom-up and not interlaced. */
  /* NEEDS WORK to support interlaced images! */
  source_row = cinfo->image_height - source->current_row - 1;

  /* Fetch that row from virtual array */
  source->pub.buffer = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, source->whole_image,
     source_row, (JDIMENSION) 1, FALSE);

  source->current_row++;
  return 1;
}


/*
 * This method loads the image into whole_image during the first call on
 * get_pixel_rows.  The get_pixel_rows pointer is then adjusted to call
 * get_memory_row on subsequent calls.
 */

METHODDEF(JDIMENSION)
preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  JDIMENSION row;
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;

  /* Read the data into a virtual array in input-file row order. */
  for (row = 0; row < cinfo->image_height; row++) {
    if (progress != NULL) {
      progress->pub.pass_counter = (long) row;
      progress->pub.pass_limit = (long) cinfo->image_height;
      (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
    }
    source->pub.buffer = (*cinfo->mem->access_virt_sarray)
      ((j_common_ptr) cinfo, source->whole_image, row, (JDIMENSION) 1, TRUE);
    (*source->get_pixel_rows) (cinfo, sinfo);
  }
  if (progress != NULL)
    progress->completed_extra_passes++;

  /* Set up to read from the virtual array in unscrambled order */
  source->pub.get_pixel_rows = get_memory_row;
  source->current_row = 0;
  /* And read the first row */
  return get_memory_row(cinfo, sinfo);
}


/*
 * Read the file header; return image size and component count.
 */

METHODDEF(void)
start_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  tga_source_ptr source = (tga_source_ptr) sinfo;
  U_CHAR targaheader[18];
  int idlen, cmaptype, subtype, flags, interlace_type, components;
  unsigned int width, height, maplen;
  boolean is_bottom_up;

#define GET_2B(offset)	((unsigned int) UCH(targaheader[offset]) + \
			 (((unsigned int) UCH(targaheader[offset+1])) << 8))

  if (! ReadOK(source->pub.input_file, targaheader, 18))
    ERREXIT(cinfo, JERR_INPUT_EOF);

  /* Pretend "15-bit" pixels are 16-bit --- we ignore attribute bit anyway */
  if (targaheader[16] == 15)
    targaheader[16] = 16;

  idlen = UCH(targaheader[0]);
  cmaptype = UCH(targaheader[1]);
  subtype = UCH(targaheader[2]);
  maplen = GET_2B(5);
  width = GET_2B(12);
  height = GET_2B(14);
  source->pixel_size = UCH(targaheader[16]) >> 3;
  flags = UCH(targaheader[17]);	/* Image Descriptor byte */

  is_bottom_up = ((flags & 0x20) == 0);	/* bit 5 set => top-down */
  interlace_type = flags >> 6;	/* bits 6/7 are interlace code */

  if (cmaptype > 1 ||		/* cmaptype must be 0 or 1 */
      source->pixel_size < 1 || source->pixel_size > 4 ||
      (UCH(targaheader[16]) & 7) != 0 || /* bits/pixel must be multiple of 8 */
      interlace_type != 0)	/* currently don't allow interlaced image */
    ERREXIT(cinfo, JERR_TGA_BADPARMS);
  
  if (subtype > 8) {
    /* It's an RLE-coded file */
    source->read_pixel = read_rle_pixel;
    source->block_count = source->dup_pixel_count = 0;
    subtype -= 8;
  } else {
    /* Non-RLE file */
    source->read_pixel = read_non_rle_pixel;
  }

  /* Now should have subtype 1, 2, or 3 */
  components = 3;		/* until proven different */
  cinfo->in_color_space = JCS_RGB;

  switch (subtype) {
  case 1:			/* Colormapped image */
    if (source->pixel_size == 1 && cmaptype == 1)
      source->get_pixel_rows = get_8bit_row;
    else
      ERREXIT(cinfo, JERR_TGA_BADPARMS);
    TRACEMS2(cinfo, 1, JTRC_TGA_MAPPED, width, height);
    break;
  case 2:			/* RGB image */
    switch (source->pixel_size) {
    case 2:
      source->get_pixel_rows = get_16bit_row;
      break;
    case 3:
      source->get_pixel_rows = get_24bit_row;
      break;
    case 4:
      source->get_pixel_rows = get_32bit_row;
      break;
    default:
      ERREXIT(cinfo, JERR_TGA_BADPARMS);
      break;
    }
    TRACEMS2(cinfo, 1, JTRC_TGA, width, height);
    break;
  case 3:			/* Grayscale image */
    components = 1;
    cinfo->in_color_space = JCS_GRAYSCALE;
    if (source->pixel_size == 1)
      source->get_pixel_rows = get_8bit_gray_row;
    else
      ERREXIT(cinfo, JERR_TGA_BADPARMS);
    TRACEMS2(cinfo, 1, JTRC_TGA_GRAY, width, height);
    break;
  default:
    ERREXIT(cinfo, JERR_TGA_BADPARMS);
    break;
  }

  if (is_bottom_up) {
    /* Create a virtual array to buffer the upside-down image. */
    source->whole_image = (*cinfo->mem->request_virt_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
       (JDIMENSION) width * components, (JDIMENSION) height, (JDIMENSION) 1);
    if (cinfo->progress != NULL) {
      cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
      progress->total_extra_passes++; /* count file input as separate pass */
    }
    /* source->pub.buffer will point to the virtual array. */
    source->pub.buffer_height = 1; /* in case anyone looks at it */
    source->pub.get_pixel_rows = preload_image;
  } else {
    /* Don't need a virtual array, but do need a one-row input buffer. */
    source->whole_image = NULL;
    source->pub.buffer = (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       (JDIMENSION) width * components, (JDIMENSION) 1);
    source->pub.buffer_height = 1;
    source->pub.get_pixel_rows = source->get_pixel_rows;
  }
  
  while (idlen--)		/* Throw away ID field */
    (void) read_byte(source);

  if (maplen > 0) {
    if (maplen > 256 || GET_2B(3) != 0)
      ERREXIT(cinfo, JERR_TGA_BADCMAP);
    /* Allocate space to store the colormap */
    source->colormap = (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE, (JDIMENSION) maplen, (JDIMENSION) 3);
    /* and read it from the file */
    read_colormap(source, (int) maplen, UCH(targaheader[7]));
  } else {
    if (cmaptype)		/* but you promised a cmap! */
      ERREXIT(cinfo, JERR_TGA_BADPARMS);
    source->colormap = NULL;
  }

  cinfo->input_components = components;
  cinfo->data_precision = 8;
  cinfo->image_width = width;
  cinfo->image_height = height;
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_input_tga (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  /* no work */
}


/*
 * The module selection routine for Targa format input.
 */

GLOBAL(cjpeg_source_ptr)
jinit_read_targa (j_compress_ptr cinfo)
{
  tga_source_ptr source;

  /* Create module interface object */
  source = (tga_source_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(tga_source_struct));
  source->cinfo = cinfo;	/* make back link for subroutines */
  /* Fill in method ptrs, except get_pixel_rows which start_input sets */
  source->pub.start_input = start_input_tga;
  source->pub.finish_input = finish_input_tga;

  return (cjpeg_source_ptr) source;
}

#endif /* TARGA_SUPPORTED */

--- NEW FILE: jdhuff.c ---
/*
 * jdhuff.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains Huffman entropy decoding routines.
 *
 * Much of the complexity here has to do with supporting input suspension.
 * If the data source module demands suspension, we want to be able to back
 * up to the start of the current MCU.  To do this, we copy state variables
 * into local working storage, and update them back to the permanent
 * storage only upon successful completion of an MCU.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdhuff.h"		/* Declarations shared with jdphuff.c */


/*
 * Expanded entropy decoder object for Huffman decoding.
 *
 * The savable_state subrecord contains fields that change within an MCU,
 * but must not be updated permanently until we complete the MCU.
 */

typedef struct {
  int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
} savable_state;

/* This macro is to work around compilers with missing or broken
 * structure assignment.  You'll need to fix this code if you have
 * such a compiler and you change MAX_COMPS_IN_SCAN.
 */

#ifndef NO_STRUCT_ASSIGN
#define ASSIGN_STATE(dest,src)  ((dest) = (src))
#else
#if MAX_COMPS_IN_SCAN == 4
#define ASSIGN_STATE(dest,src)  \
	((dest).last_dc_val[0] = (src).last_dc_val[0], \
	 (dest).last_dc_val[1] = (src).last_dc_val[1], \
	 (dest).last_dc_val[2] = (src).last_dc_val[2], \
	 (dest).last_dc_val[3] = (src).last_dc_val[3])
#endif
#endif


typedef struct {
  struct jpeg_entropy_decoder pub; /* public fields */

  /* These fields are loaded into local variables at start of each MCU.
   * In case of suspension, we exit WITHOUT updating them.
   */
  bitread_perm_state bitstate;	/* Bit buffer at start of MCU */
  savable_state saved;		/* Other state at start of MCU */

  /* These fields are NOT loaded into local working state. */
  unsigned int restarts_to_go;	/* MCUs left in this restart interval */

  /* Pointers to derived tables (these workspaces have image lifespan) */
  d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
  d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];

  /* Precalculated info set up by start_pass for use in decode_mcu: */

  /* Pointers to derived tables to be used for each block within an MCU */
  d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
  /* Whether we care about the DC and AC coefficient values for each block */
  boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
  boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
} huff_entropy_decoder;

typedef huff_entropy_decoder * huff_entropy_ptr;


/*
 * Initialize for a Huffman-compressed scan.
 */

METHODDEF(void)
start_pass_huff_decoder (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci, blkn, dctbl, actbl;
  jpeg_component_info * compptr;

  /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
   * This ought to be an error condition, but we make it a warning because
   * there are some baseline files out there with all zeroes in these bytes.
   */
  if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
      cinfo->Ah != 0 || cinfo->Al != 0)
    WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    dctbl = compptr->dc_tbl_no;
    actbl = compptr->ac_tbl_no;
    /* Compute derived values for Huffman tables */
    /* We may do this more than once for a table, but it's not expensive */
    jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
			    & entropy->dc_derived_tbls[dctbl]);
    jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
			    & entropy->ac_derived_tbls[actbl]);
    /* Initialize DC predictions to 0 */
    entropy->saved.last_dc_val[ci] = 0;
  }

  /* Precalculate decoding info for each block in an MCU of this scan */
  for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    ci = cinfo->MCU_membership[blkn];
    compptr = cinfo->cur_comp_info[ci];
    /* Precalculate which table to use for each block */
    entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
    entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
    /* Decide whether we really care about the coefficient values */
    if (compptr->component_needed) {
      entropy->dc_needed[blkn] = TRUE;
      /* we don't need the ACs if producing a 1/8th-size image */
      entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
    } else {
      entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
    }
  }

  /* Initialize bitread state variables */
  entropy->bitstate.bits_left = 0;
  entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
  entropy->pub.insufficient_data = FALSE;

  /* Initialize restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;
}


/*
 * Compute the derived values for a Huffman table.
 * This routine also performs some validation checks on the table.
 *
 * Note this is also used by jdphuff.c.
 */

GLOBAL(void)
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
			 d_derived_tbl ** pdtbl)
{
  JHUFF_TBL *htbl;
  d_derived_tbl *dtbl;
  int p, i, l, si, numsymbols;
  int lookbits, ctr;
  char huffsize[257];
  unsigned int huffcode[257];
  unsigned int code;

  /* Note that huffsize[] and huffcode[] are filled in code-length order,
   * paralleling the order of the symbols themselves in htbl->huffval[].
   */

  /* Find the input Huffman table */
  if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
  htbl =
    isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
  if (htbl == NULL)
    ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);

  /* Allocate a workspace if we haven't already done so. */
  if (*pdtbl == NULL)
    *pdtbl = (d_derived_tbl *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(d_derived_tbl));
  dtbl = *pdtbl;
  dtbl->pub = htbl;		/* fill in back link */
  
  /* Figure C.1: make table of Huffman code length for each symbol */

  p = 0;
  for (l = 1; l <= 16; l++) {
    i = (int) htbl->bits[l];
    if (i < 0 || p + i > 256)	/* protect against table overrun */
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    while (i--)
      huffsize[p++] = (char) l;
  }
  huffsize[p] = 0;
  numsymbols = p;
  
  /* Figure C.2: generate the codes themselves */
  /* We also validate that the counts represent a legal Huffman code tree. */
  
  code = 0;
  si = huffsize[0];
  p = 0;
  while (huffsize[p]) {
    while (((int) huffsize[p]) == si) {
      huffcode[p++] = code;
      code++;
    }
    /* code is now 1 more than the last code used for codelength si; but
     * it must still fit in si bits, since no code is allowed to be all ones.
     */
    if (((INT32) code) >= (((INT32) 1) << si))
      ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    code <<= 1;
    si++;
  }

  /* Figure F.15: generate decoding tables for bit-sequential decoding */

  p = 0;
  for (l = 1; l <= 16; l++) {
    if (htbl->bits[l]) {
      /* valoffset[l] = huffval[] index of 1st symbol of code length l,
       * minus the minimum code of length l
       */
      dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
      p += htbl->bits[l];
      dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
    } else {
      dtbl->maxcode[l] = -1;	/* -1 if no codes of this length */
    }
  }
  dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */

  /* Compute lookahead tables to speed up decoding.
   * First we set all the table entries to 0, indicating "too long";
   * then we iterate through the Huffman codes that are short enough and
   * fill in all the entries that correspond to bit sequences starting
   * with that code.
   */

  MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));

  p = 0;
  for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
    for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
      /* l = current code's length, p = its index in huffcode[] & huffval[]. */
      /* Generate left-justified code followed by all possible bit sequences */
      lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
      for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
	dtbl->look_nbits[lookbits] = l;
	dtbl->look_sym[lookbits] = htbl->huffval[p];
	lookbits++;
      }
    }
  }

  /* Validate symbols as being reasonable.
   * For AC tables, we make no check, but accept all byte values 0..255.
   * For DC tables, we require the symbols to be in range 0..15.
   * (Tighter bounds could be applied depending on the data depth and mode,
   * but this is sufficient to ensure safe decoding.)
   */
  if (isDC) {
    for (i = 0; i < numsymbols; i++) {
      int sym = htbl->huffval[i];
      if (sym < 0 || sym > 15)
	ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    }
  }
}


/*
 * Out-of-line code for bit fetching (shared with jdphuff.c).
 * See jdhuff.h for info about usage.
 * Note: current values of get_buffer and bits_left are passed as parameters,
 * but are returned in the corresponding fields of the state struct.
 *
 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
 * of get_buffer to be used.  (On machines with wider words, an even larger
 * buffer could be used.)  However, on some machines 32-bit shifts are
 * quite slow and take time proportional to the number of places shifted.
 * (This is true with most PC compilers, for instance.)  In this case it may
 * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
 */

#ifdef SLOW_SHIFT_32
#define MIN_GET_BITS  15	/* minimum allowable value */
#else
#define MIN_GET_BITS  (BIT_BUF_SIZE-7)
#endif


GLOBAL(boolean)
jpeg_fill_bit_buffer (bitread_working_state * state,
		      register bit_buf_type get_buffer, register int bits_left,
		      int nbits)
/* Load up the bit buffer to a depth of at least nbits */
{
  /* Copy heavily used state fields into locals (hopefully registers) */
  register const JOCTET * next_input_byte = state->next_input_byte;
  register size_t bytes_in_buffer = state->bytes_in_buffer;
  j_decompress_ptr cinfo = state->cinfo;

  /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
  /* (It is assumed that no request will be for more than that many bits.) */
  /* We fail to do so only if we hit a marker or are forced to suspend. */

  if (cinfo->unread_marker == 0) {	/* cannot advance past a marker */
    while (bits_left < MIN_GET_BITS) {
      register int c;

      /* Attempt to read a byte */
      if (bytes_in_buffer == 0) {
	if (! (*cinfo->src->fill_input_buffer) (cinfo))
	  return FALSE;
	next_input_byte = cinfo->src->next_input_byte;
	bytes_in_buffer = cinfo->src->bytes_in_buffer;
      }
      bytes_in_buffer--;
      c = GETJOCTET(*next_input_byte++);

      /* If it's 0xFF, check and discard stuffed zero byte */
      if (c == 0xFF) {
	/* Loop here to discard any padding FF's on terminating marker,
	 * so that we can save a valid unread_marker value.  NOTE: we will
	 * accept multiple FF's followed by a 0 as meaning a single FF data
	 * byte.  This data pattern is not valid according to the standard.
	 */
	do {
	  if (bytes_in_buffer == 0) {
	    if (! (*cinfo->src->fill_input_buffer) (cinfo))
	      return FALSE;
	    next_input_byte = cinfo->src->next_input_byte;
	    bytes_in_buffer = cinfo->src->bytes_in_buffer;
	  }
	  bytes_in_buffer--;
	  c = GETJOCTET(*next_input_byte++);
	} while (c == 0xFF);

	if (c == 0) {
	  /* Found FF/00, which represents an FF data byte */
	  c = 0xFF;
	} else {
	  /* Oops, it's actually a marker indicating end of compressed data.
	   * Save the marker code for later use.
	   * Fine point: it might appear that we should save the marker into
	   * bitread working state, not straight into permanent state.  But
	   * once we have hit a marker, we cannot need to suspend within the
	   * current MCU, because we will read no more bytes from the data
	   * source.  So it is OK to update permanent state right away.
	   */
	  cinfo->unread_marker = c;
	  /* See if we need to insert some fake zero bits. */
	  goto no_more_bytes;
	}
      }

      /* OK, load c into get_buffer */
      get_buffer = (get_buffer << 8) | c;
      bits_left += 8;
    } /* end while */
  } else {
  no_more_bytes:
    /* We get here if we've read the marker that terminates the compressed
     * data segment.  There should be enough bits in the buffer register
     * to satisfy the request; if so, no problem.
     */
    if (nbits > bits_left) {
      /* Uh-oh.  Report corrupted data to user and stuff zeroes into
       * the data stream, so that we can produce some kind of image.
       * We use a nonvolatile flag to ensure that only one warning message
       * appears per data segment.
       */
      if (! cinfo->entropy->insufficient_data) {
	WARNMS(cinfo, JWRN_HIT_MARKER);
	cinfo->entropy->insufficient_data = TRUE;
      }
      /* Fill the buffer with zero bits */
      get_buffer <<= MIN_GET_BITS - bits_left;
      bits_left = MIN_GET_BITS;
    }
  }

  /* Unload the local registers */
  state->next_input_byte = next_input_byte;
  state->bytes_in_buffer = bytes_in_buffer;
  state->get_buffer = get_buffer;
  state->bits_left = bits_left;

  return TRUE;
}


/*
 * Out-of-line code for Huffman code decoding.
 * See jdhuff.h for info about usage.
 */

GLOBAL(int)
jpeg_huff_decode (bitread_working_state * state,
		  register bit_buf_type get_buffer, register int bits_left,
		  d_derived_tbl * htbl, int min_bits)
{
  register int l = min_bits;
  register INT32 code;

  /* HUFF_DECODE has determined that the code is at least min_bits */
  /* bits long, so fetch that many bits in one swoop. */

  CHECK_BIT_BUFFER(*state, l, return -1);
  code = GET_BITS(l);

  /* Collect the rest of the Huffman code one bit at a time. */
  /* This is per Figure F.16 in the JPEG spec. */

  while (code > htbl->maxcode[l]) {
    code <<= 1;
    CHECK_BIT_BUFFER(*state, 1, return -1);
    code |= GET_BITS(1);
    l++;
  }

  /* Unload the local registers */
  state->get_buffer = get_buffer;
  state->bits_left = bits_left;

  /* With garbage input we may reach the sentinel value l = 17. */

  if (l > 16) {
    WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
    return 0;			/* fake a zero as the safest result */
  }

  return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
}


/*
 * Figure F.12: extend sign bit.
 * On some machines, a shift and add will be faster than a table lookup.
 */

#ifdef AVOID_TABLES

#define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))

#else

#define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))

static const int extend_test[16] =   /* entry n is 2**(n-1) */
  { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
    0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };

static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
  { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
    ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
    ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
    ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };

#endif /* AVOID_TABLES */


/*
 * Check for a restart marker & resynchronize decoder.
 * Returns FALSE if must suspend.
 */

LOCAL(boolean)
process_restart (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int ci;

  /* Throw away any unused bits remaining in bit buffer; */
  /* include any full bytes in next_marker's count of discarded bytes */
  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
  entropy->bitstate.bits_left = 0;

  /* Advance past the RSTn marker */
  if (! (*cinfo->marker->read_restart_marker) (cinfo))
    return FALSE;

  /* Re-initialize DC predictions to 0 */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    entropy->saved.last_dc_val[ci] = 0;

  /* Reset restart counter */
  entropy->restarts_to_go = cinfo->restart_interval;

  /* Reset out-of-data flag, unless read_restart_marker left us smack up
   * against a marker.  In that case we will end up treating the next data
   * segment as empty, and we can avoid producing bogus output pixels by
   * leaving the flag set.
   */
  if (cinfo->unread_marker == 0)
    entropy->pub.insufficient_data = FALSE;

  return TRUE;
}


/*
 * Decode and return one MCU's worth of Huffman-compressed coefficients.
 * The coefficients are reordered from zigzag order into natural array order,
 * but are not dequantized.
 *
 * The i'th block of the MCU is stored into the block pointed to by
 * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
 * (Wholesale zeroing is usually a little faster than retail...)
 *
 * Returns FALSE if data source requested suspension.  In that case no
 * changes have been made to permanent state.  (Exception: some output
 * coefficients may already have been assigned.  This is harmless for
 * this module, since we'll just re-assign them on the next call.)
 */

METHODDEF(boolean)
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
{
  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
  int blkn;
  BITREAD_STATE_VARS;
  savable_state state;

  /* Process restart marker if needed; may have to suspend */
  if (cinfo->restart_interval) {
    if (entropy->restarts_to_go == 0)
      if (! process_restart(cinfo))
	return FALSE;
  }

  /* If we've run out of data, just leave the MCU set to zeroes.
   * This way, we return uniform gray for the remainder of the segment.
   */
  if (! entropy->pub.insufficient_data) {

    /* Load up working state */
    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(state, entropy->saved);

    /* Outer loop handles each block in the MCU */

    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
      JBLOCKROW block = MCU_data[blkn];
      d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
      d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
      register int s, k, r;

      /* Decode a single block's worth of coefficients */

      /* Section F.2.2.1: decode the DC coefficient difference */
      HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
      if (s) {
	CHECK_BIT_BUFFER(br_state, s, return FALSE);
	r = GET_BITS(s);
	s = HUFF_EXTEND(r, s);
      }

      if (entropy->dc_needed[blkn]) {
	/* Convert DC difference to actual value, update last_dc_val */
	int ci = cinfo->MCU_membership[blkn];
	s += state.last_dc_val[ci];
	state.last_dc_val[ci] = s;
	/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
	(*block)[0] = (JCOEF) s;
      }

      if (entropy->ac_needed[blkn]) {

	/* Section F.2.2.2: decode the AC coefficients */
	/* Since zeroes are skipped, output area must be cleared beforehand */
	for (k = 1; k < DCTSIZE2; k++) {
	  HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
      
	  r = s >> 4;
	  s &= 15;
      
	  if (s) {
	    k += r;
	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
	    r = GET_BITS(s);
	    s = HUFF_EXTEND(r, s);
	    /* Output coefficient in natural (dezigzagged) order.
	     * Note: the extra entries in jpeg_natural_order[] will save us
	     * if k >= DCTSIZE2, which could happen if the data is corrupted.
	     */
	    (*block)[jpeg_natural_order[k]] = (JCOEF) s;
	  } else {
	    if (r != 15)
	      break;
	    k += 15;
	  }
	}

      } else {

	/* Section F.2.2.2: decode the AC coefficients */
	/* In this path we just discard the values */
	for (k = 1; k < DCTSIZE2; k++) {
	  HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
      
	  r = s >> 4;
	  s &= 15;
      
	  if (s) {
	    k += r;
	    CHECK_BIT_BUFFER(br_state, s, return FALSE);
	    DROP_BITS(s);
	  } else {
	    if (r != 15)
	      break;
	    k += 15;
	  }
	}

      }
    }

    /* Completed MCU, so update state */
    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
    ASSIGN_STATE(entropy->saved, state);
  }

  /* Account for restart interval (no-op if not using restarts) */
  entropy->restarts_to_go--;

  return TRUE;
}


/*
 * Module initialization routine for Huffman entropy decoding.
 */

GLOBAL(void)
jinit_huff_decoder (j_decompress_ptr cinfo)
{
  huff_entropy_ptr entropy;
  int i;

  entropy = (huff_entropy_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(huff_entropy_decoder));
  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
  entropy->pub.start_pass = start_pass_huff_decoder;
  entropy->pub.decode_mcu = decode_mcu;

  /* Mark tables unallocated */
  for (i = 0; i < NUM_HUFF_TBLS; i++) {
    entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
  }
}

--- NEW FILE: structure.doc ---
IJG JPEG LIBRARY:  SYSTEM ARCHITECTURE

Copyright (C) 1991-1995, Thomas G. Lane.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.


This file provides an overview of the architecture of the IJG JPEG software;
that is, the functions of the various modules in the system and the interfaces
between modules.  For more precise details about any data structure or calling
convention, see the include files and comments in the source code.

We assume that the reader is already somewhat familiar with the JPEG standard.
The README file includes references for learning about JPEG.  The file
libjpeg.doc describes the library from the viewpoint of an application
programmer using the library; it's best to read that file before this one.
Also, the file coderules.doc describes the coding style conventions we use.

In this document, JPEG-specific terminology follows the JPEG standard:
  A "component" means a color channel, e.g., Red or Luminance.
  A "sample" is a single component value (i.e., one number in the image data).
  A "coefficient" is a frequency coefficient (a DCT transform output number).
  A "block" is an 8x8 group of samples or coefficients.
  An "MCU" (minimum coded unit) is an interleaved set of blocks of size
	determined by the sampling factors, or a single block in a
	noninterleaved scan.
We do not use the terms "pixel" and "sample" interchangeably.  When we say
pixel, we mean an element of the full-size image, while a sample is an element
of the downsampled image.  Thus the number of samples may vary across
components while the number of pixels does not.  (This terminology is not used
rigorously throughout the code, but it is used in places where confusion would
otherwise result.)


*** System features ***

The IJG distribution contains two parts:
  * A subroutine library for JPEG compression and decompression.
  * cjpeg/djpeg, two sample applications that use the library to transform
    JFIF JPEG files to and from several other image formats.
cjpeg/djpeg are of no great intellectual complexity: they merely add a simple
command-line user interface and I/O routines for several uncompressed image
formats.  This document concentrates on the library itself.

We desire the library to be capable of supporting all JPEG baseline, extended
sequential, and progressive DCT processes.  Hierarchical processes are not
supported.

The library does not support the lossless (spatial) JPEG process.  Lossless
JPEG shares little or no code with lossy JPEG, and would normally be used
without the extensive pre- and post-processing provided by this library.
We feel that lossless JPEG is better handled by a separate library.

Within these limits, any set of compression parameters allowed by the JPEG
spec should be readable for decompression.  (We can be more restrictive about
what formats we can generate.)  Although the system design allows for all
parameter values, some uncommon settings are not yet implemented and may
never be; nonintegral sampling ratios are the prime example.  Furthermore,
we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a
run-time option, because most machines can store 8-bit pixels much more
compactly than 12-bit.

For legal reasons, JPEG arithmetic coding is not currently supported, but
extending the library to include it would be straightforward.

By itself, the library handles only interchange JPEG datastreams --- in
particular the widely used JFIF file format.  The library can be used by
surrounding code to process interchange or abbreviated JPEG datastreams that
are embedded in more complex file formats.  (For example, libtiff uses this
library to implement JPEG compression within the TIFF file format.)

The library includes a substantial amount of code that is not covered by the
JPEG standard but is necessary for typical applications of JPEG.  These
functions preprocess the image before JPEG compression or postprocess it after
decompression.  They include colorspace conversion, downsampling/upsampling,
and color quantization.  This code can be omitted if not needed.

A wide range of quality vs. speed tradeoffs are possible in JPEG processing,
and even more so in decompression postprocessing.  The decompression library
provides multiple implementations that cover most of the useful tradeoffs,
ranging from very-high-quality down to fast-preview operation.  On the
compression side we have generally not provided low-quality choices, since
compression is normally less time-critical.  It should be understood that the
low-quality modes may not meet the JPEG standard's accuracy requirements;
nonetheless, they are useful for viewers.


*** Portability issues ***

Portability is an essential requirement for the library.  The key portability
issues that show up at the level of system architecture are:

1.  Memory usage.  We want the code to be able to run on PC-class machines
with limited memory.  Images should therefore be processed sequentially (in
strips), to avoid holding the whole image in memory at once.  Where a
full-image buffer is necessary, we should be able to use either virtual memory
or temporary files.

2.  Near/far pointer distinction.  To run efficiently on 80x86 machines, the
code should distinguish "small" objects (kept in near data space) from
"large" ones (kept in far data space).  This is an annoying restriction, but
fortunately it does not impact code quality for less brain-damaged machines,
and the source code clutter turns out to be minimal with sufficient use of
pointer typedefs.

3. Data precision.  We assume that "char" is at least 8 bits, "short" and
"int" at least 16, "long" at least 32.  The code will work fine with larger
data sizes, although memory may be used inefficiently in some cases.  However,
the JPEG compressed datastream must ultimately appear on external storage as a
sequence of 8-bit bytes if it is to conform to the standard.  This may pose a
problem on machines where char is wider than 8 bits.  The library represents
compressed data as an array of values of typedef JOCTET.  If no data type
exactly 8 bits wide is available, custom data source and data destination
modules must be written to unpack and pack the chosen JOCTET datatype into
8-bit external representation.


*** System overview ***

The compressor and decompressor are each divided into two main sections:
the JPEG compressor or decompressor proper, and the preprocessing or
postprocessing functions.  The interface between these two sections is the
image data that the official JPEG spec regards as its input or output: this
data is in the colorspace to be used for compression, and it is downsampled
to the sampling factors to be used.  The preprocessing and postprocessing
steps are responsible for converting a normal image representation to or from
this form.  (Those few applications that want to deal with YCbCr downsampled
data can skip the preprocessing or postprocessing step.)

Looking more closely, the compressor library contains the following main
elements:

  Preprocessing:
    * Color space conversion (e.g., RGB to YCbCr).
    * Edge expansion and downsampling.  Optionally, this step can do simple
      smoothing --- this is often helpful for low-quality source data.
  JPEG proper:
    * MCU assembly, DCT, quantization.
    * Entropy coding (sequential or progressive, Huffman or arithmetic).

In addition to these modules we need overall control, marker generation,
and support code (memory management & error handling).  There is also a
module responsible for physically writing the output data --- typically
this is just an interface to fwrite(), but some applications may need to
do something else with the data.

The decompressor library contains the following main elements:

  JPEG proper:
    * Entropy decoding (sequential or progressive, Huffman or arithmetic).
    * Dequantization, inverse DCT, MCU disassembly.
  Postprocessing:
    * Upsampling.  Optionally, this step may be able to do more general
      rescaling of the image.
    * Color space conversion (e.g., YCbCr to RGB).  This step may also
      provide gamma adjustment [ currently it does not ].
    * Optional color quantization (e.g., reduction to 256 colors).
    * Optional color precision reduction (e.g., 24-bit to 15-bit color).
      [This feature is not currently implemented.]

We also need overall control, marker parsing, and a data source module.
The support code (memory management & error handling) can be shared with
the compression half of the library.

There may be several implementations of each of these elements, particularly
in the decompressor, where a wide range of speed/quality tradeoffs is very
useful.  It must be understood that some of the best speedups involve
merging adjacent steps in the pipeline.  For example, upsampling, color space
conversion, and color quantization might all be done at once when using a
low-quality ordered-dither technique.  The system architecture is designed to
allow such merging where appropriate.


Note: it is convenient to regard edge expansion (padding to block boundaries)
as a preprocessing/postprocessing function, even though the JPEG spec includes
it in compression/decompression.  We do this because downsampling/upsampling
can be simplified a little if they work on padded data: it's not necessary to
have special cases at the right and bottom edges.  Therefore the interface
buffer is always an integral number of blocks wide and high, and we expect
compression preprocessing to pad the source data properly.  Padding will occur
only to the next block (8-sample) boundary.  In an interleaved-scan situation,
additional dummy blocks may be used to fill out MCUs, but the MCU assembly and
disassembly logic will create or discard these blocks internally.  (This is
advantageous for speed reasons, since we avoid DCTing the dummy blocks.
It also permits a small reduction in file size, because the compressor can
choose dummy block contents so as to minimize their size in compressed form.
Finally, it makes the interface buffer specification independent of whether
the file is actually interleaved or not.)  Applications that wish to deal
directly with the downsampled data must provide similar buffering and padding
for odd-sized images.


*** Poor man's object-oriented programming ***

It should be clear by now that we have a lot of quasi-independent processing
steps, many of which have several possible behaviors.  To avoid cluttering the
code with lots of switch statements, we use a simple form of object-style
programming to separate out the different possibilities.

For example, two different color quantization algorithms could be implemented
as two separate modules that present the same external interface; at runtime,
the calling code will access the proper module indirectly through an "object".

We can get the limited features we need while staying within portable C.
The basic tool is a function pointer.  An "object" is just a struct
containing one or more function pointer fields, each of which corresponds to
a method name in real object-oriented languages.  During initialization we
fill in the function pointers with references to whichever module we have
determined we need to use in this run.  Then invocation of the module is done
by indirecting through a function pointer; on most machines this is no more
expensive than a switch statement, which would be the only other way of
making the required run-time choice.  The really significant benefit, of
course, is keeping the source code clean and well structured.

We can also arrange to have private storage that varies between different
implementations of the same kind of object.  We do this by making all the
module-specific object structs be separately allocated entities, which will
be accessed via pointers in the master compression or decompression struct.
The "public" fields or methods for a given kind of object are specified by
a commonly known struct.  But a module's initialization code can allocate
a larger struct that contains the common struct as its first member, plus
additional private fields.  With appropriate pointer casting, the module's
internal functions can access these private fields.  (For a simple example,
see jdatadst.c, which implements the external interface specified by struct
jpeg_destination_mgr, but adds extra fields.)

(Of course this would all be a lot easier if we were using C++, but we are
not yet prepared to assume that everyone has a C++ compiler.)

An important benefit of this scheme is that it is easy to provide multiple
versions of any method, each tuned to a particular case.  While a lot of
precalculation might be done to select an optimal implementation of a method,
the cost per invocation is constant.  For example, the upsampling step might
have a "generic" method, plus one or more "hardwired" methods for the most
popular sampling factors; the hardwired methods would be faster because they'd
use straight-line code instead of for-loops.  The cost to determine which
method to use is paid only once, at startup, and the selection criteria are
hidden from the callers of the method.

This plan differs a little bit from usual object-oriented structures, in that
only one instance of each object class will exist during execution.  The
reason for having the class structure is that on different runs we may create
different instances (choose to execute different modules).  You can think of
the term "method" as denoting the common interface presented by a particular
set of interchangeable functions, and "object" as denoting a group of related
methods, or the total shared interface behavior of a group of modules.


*** Overall control structure ***

We previously mentioned the need for overall control logic in the compression
and decompression libraries.  In IJG implementations prior to v5, overall
control was mostly provided by "pipeline control" modules, which proved to be
large, unwieldy, and hard to understand.  To improve the situation, the
control logic has been subdivided into multiple modules.  The control modules
consist of:

1. Master control for module selection and initialization.  This has two
responsibilities:

   1A.  Startup initialization at the beginning of image processing.
        The individual processing modules to be used in this run are selected
        and given initialization calls.

   1B.  Per-pass control.  This determines how many passes will be performed
        and calls each active processing module to configure itself
        appropriately at the beginning of each pass.  End-of-pass processing,
	where necessary, is also invoked from the master control module.

   Method selection is partially distributed, in that a particular processing
   module may contain several possible implementations of a particular method,
   which it will select among when given its initialization call.  The master
   control code need only be concerned with decisions that affect more than
   one module.
 
2. Data buffering control.  A separate control module exists for each
   inter-processing-step data buffer.  This module is responsible for
   invoking the processing steps that write or read that data buffer.

Each buffer controller sees the world as follows:

input data => processing step A => buffer => processing step B => output data
                      |              |               |
              ------------------ controller ------------------

The controller knows the dataflow requirements of steps A and B: how much data
they want to accept in one chunk and how much they output in one chunk.  Its
function is to manage its buffer and call A and B at the proper times.

A data buffer control module may itself be viewed as a processing step by a
higher-level control module; thus the control modules form a binary tree with
elementary processing steps at the leaves of the tree.

The control modules are objects.  A considerable amount of flexibility can
be had by replacing implementations of a control module.  For example:
* Merging of adjacent steps in the pipeline is done by replacing a control
  module and its pair of processing-step modules with a single processing-
  step module.  (Hence the possible merges are determined by the tree of
  control modules.)
* In some processing modes, a given interstep buffer need only be a "strip"
  buffer large enough to accommodate the desired data chunk sizes.  In other
  modes, a full-image buffer is needed and several passes are required.
  The control module determines which kind of buffer is used and manipulates
  virtual array buffers as needed.  One or both processing steps may be
  unaware of the multi-pass behavior.

In theory, we might be able to make all of the data buffer controllers
interchangeable and provide just one set of implementations for all.  In
practice, each one contains considerable special-case processing for its
particular job.  The buffer controller concept should be regarded as an
overall system structuring principle, not as a complete description of the
task performed by any one controller.


*** Compression object structure ***

Here is a sketch of the logical structure of the JPEG compression library:

                                                 |-- Colorspace conversion
                  |-- Preprocessing controller --|
                  |                              |-- Downsampling
Main controller --|
                  |                            |-- Forward DCT, quantize
                  |-- Coefficient controller --|
                                               |-- Entropy encoding

This sketch also describes the flow of control (subroutine calls) during
typical image data processing.  Each of the components shown in the diagram is
an "object" which may have several different implementations available.  One
or more source code files contain the actual implementation(s) of each object.

The objects shown above are:

* Main controller: buffer controller for the subsampled-data buffer, which
  holds the preprocessed input data.  This controller invokes preprocessing to
  fill the subsampled-data buffer, and JPEG compression to empty it.  There is
  usually no need for a full-image buffer here; a strip buffer is adequate.

* Preprocessing controller: buffer controller for the downsampling input data
  buffer, which lies between colorspace conversion and downsampling.  Note
  that a unified conversion/downsampling module would probably replace this
  controller entirely.

* Colorspace conversion: converts application image data into the desired
  JPEG color space; also changes the data from pixel-interleaved layout to
  separate component planes.  Processes one pixel row at a time.

* Downsampling: performs reduction of chroma components as required.
  Optionally may perform pixel-level smoothing as well.  Processes a "row
  group" at a time, where a row group is defined as Vmax pixel rows of each
  component before downsampling, and Vk sample rows afterwards (remember Vk
  differs across components).  Some downsampling or smoothing algorithms may
  require context rows above and below the current row group; the
  preprocessing controller is responsible for supplying these rows via proper
  buffering.  The downsampler is responsible for edge expansion at the right
  edge (i.e., extending each sample row to a multiple of 8 samples); but the
  preprocessing controller is responsible for vertical edge expansion (i.e.,
  duplicating the bottom sample row as needed to make a multiple of 8 rows).

* Coefficient controller: buffer controller for the DCT-coefficient data.
  This controller handles MCU assembly, including insertion of dummy DCT
  blocks when needed at the right or bottom edge.  When performing
  Huffman-code optimization or emitting a multiscan JPEG file, this
  controller is responsible for buffering the full image.  The equivalent of
  one fully interleaved MCU row of subsampled data is processed per call,
  even when the JPEG file is noninterleaved.

* Forward DCT and quantization: Perform DCT, quantize, and emit coefficients.
  Works on one or more DCT blocks at a time.  (Note: the coefficients are now
  emitted in normal array order, which the entropy encoder is expected to
  convert to zigzag order as necessary.  Prior versions of the IJG code did
  the conversion to zigzag order within the quantization step.)

* Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the
  coded data to the data destination module.  Works on one MCU per call.
  For progressive JPEG, the same DCT blocks are fed to the entropy coder
  during each pass, and the coder must emit the appropriate subset of
  coefficients.

In addition to the above objects, the compression library includes these
objects:

* Master control: determines the number of passes required, controls overall
  and per-pass initialization of the other modules.

* Marker writing: generates JPEG markers (except for RSTn, which is emitted
  by the entropy encoder when needed).

* Data destination manager: writes the output JPEG datastream to its final
  destination (e.g., a file).  The destination manager supplied with the
  library knows how to write to a stdio stream; for other behaviors, the
  surrounding application may provide its own destination manager.

* Memory manager: allocates and releases memory, controls virtual arrays
  (with backing store management, where required).

* Error handler: performs formatting and output of error and trace messages;
  determines handling of nonfatal errors.  The surrounding application may
  override some or all of this object's methods to change error handling.

* Progress monitor: supports output of "percent-done" progress reports.
  This object represents an optional callback to the surrounding application:
  if wanted, it must be supplied by the application.

The error handler, destination manager, and progress monitor objects are
defined as separate objects in order to simplify application-specific
customization of the JPEG library.  A surrounding application may override
individual methods or supply its own all-new implementation of one of these
objects.  The object interfaces for these objects are therefore treated as
part of the application interface of the library, whereas the other objects
are internal to the library.

The error handler and memory manager are shared by JPEG compression and
decompression; the progress monitor, if used, may be shared as well.


*** Decompression object structure ***

Here is a sketch of the logical structure of the JPEG decompression library:

                                               |-- Entropy decoding
                  |-- Coefficient controller --|
                  |                            |-- Dequantize, Inverse DCT
Main controller --|
                  |                               |-- Upsampling
                  |-- Postprocessing controller --|   |-- Colorspace conversion
                                                  |-- Color quantization
                                                  |-- Color precision reduction

As before, this diagram also represents typical control flow.  The objects
shown are:

* Main controller: buffer controller for the subsampled-data buffer, which
  holds the output of JPEG decompression proper.  This controller's primary
  task is to feed the postprocessing procedure.  Some upsampling algorithms
  may require context rows above and below the current row group; when this
  is true, the main controller is responsible for managing its buffer so as
  to make context rows available.  In the current design, the main buffer is
  always a strip buffer; a full-image buffer is never required.

* Coefficient controller: buffer controller for the DCT-coefficient data.
  This controller handles MCU disassembly, including deletion of any dummy
  DCT blocks at the right or bottom edge.  When reading a multiscan JPEG
  file, this controller is responsible for buffering the full image.
  (Buffering DCT coefficients, rather than samples, is necessary to support
  progressive JPEG.)  The equivalent of one fully interleaved MCU row of
  subsampled data is processed per call, even when the source JPEG file is
  noninterleaved.

* Entropy decoding: Read coded data from the data source module and perform
  Huffman or arithmetic entropy decoding.  Works on one MCU per call.
  For progressive JPEG decoding, the coefficient controller supplies the prior
  coefficients of each MCU (initially all zeroes), which the entropy decoder
  modifies in each scan.

* Dequantization and inverse DCT: like it says.  Note that the coefficients
  buffered by the coefficient controller have NOT been dequantized; we
  merge dequantization and inverse DCT into a single step for speed reasons.
  When scaled-down output is asked for, simplified DCT algorithms may be used
  that emit only 1x1, 2x2, or 4x4 samples per DCT block, not the full 8x8.
  Works on one DCT block at a time.

* Postprocessing controller: buffer controller for the color quantization
  input buffer, when quantization is in use.  (Without quantization, this
  controller just calls the upsampler.)  For two-pass quantization, this
  controller is responsible for buffering the full-image data.

* Upsampling: restores chroma components to full size.  (May support more
  general output rescaling, too.  Note that if undersized DCT outputs have
  been emitted by the DCT module, this module must adjust so that properly
  sized outputs are created.)  Works on one row group at a time.  This module
  also calls the color conversion module, so its top level is effectively a
  buffer controller for the upsampling->color conversion buffer.  However, in
  all but the highest-quality operating modes, upsampling and color
  conversion are likely to be merged into a single step.

* Colorspace conversion: convert from JPEG color space to output color space,
  and change data layout from separate component planes to pixel-interleaved.
  Works on one pixel row at a time.

* Color quantization: reduce the data to colormapped form, using either an
  externally specified colormap or an internally generated one.  This module
  is not used for full-color output.  Works on one pixel row at a time; may
  require two passes to generate a color map.  Note that the output will
  always be a single component representing colormap indexes.  In the current
  design, the output values are JSAMPLEs, so an 8-bit compilation cannot
  quantize to more than 256 colors.  This is unlikely to be a problem in
  practice.

* Color reduction: this module handles color precision reduction, e.g.,
  generating 15-bit color (5 bits/primary) from JPEG's 24-bit output.
  Not quite clear yet how this should be handled... should we merge it with
  colorspace conversion???

Note that some high-speed operating modes might condense the entire
postprocessing sequence to a single module (upsample, color convert, and
quantize in one step).

In addition to the above objects, the decompression library includes these
objects:

* Master control: determines the number of passes required, controls overall
  and per-pass initialization of the other modules.  This is subdivided into
  input and output control: jdinput.c controls only input-side processing,
  while jdmaster.c handles overall initialization and output-side control.

* Marker reading: decodes JPEG markers (except for RSTn).

* Data source manager: supplies the input JPEG datastream.  The source
  manager supplied with the library knows how to read from a stdio stream;
  for other behaviors, the surrounding application may provide its own source
  manager.

* Memory manager: same as for compression library.

* Error handler: same as for compression library.

* Progress monitor: same as for compression library.

As with compression, the data source manager, error handler, and progress
monitor are candidates for replacement by a surrounding application.


*** Decompression input and output separation ***

To support efficient incremental display of progressive JPEG files, the
decompressor is divided into two sections that can run independently:

1. Data input includes marker parsing, entropy decoding, and input into the
   coefficient controller's DCT coefficient buffer.  Note that this
   processing is relatively cheap and fast.

2. Data output reads from the DCT coefficient buffer and performs the IDCT
   and all postprocessing steps.

For a progressive JPEG file, the data input processing is allowed to get
arbitrarily far ahead of the data output processing.  (This occurs only
if the application calls jpeg_consume_input(); otherwise input and output
run in lockstep, since the input section is called only when the output
section needs more data.)  In this way the application can avoid making
extra display passes when data is arriving faster than the display pass
can run.  Furthermore, it is possible to abort an output pass without
losing anything, since the coefficient buffer is read-only as far as the
output section is concerned.  See libjpeg.doc for more detail.

A full-image coefficient array is only created if the JPEG file has multiple
scans (or if the application specifies buffered-image mode anyway).  When
reading a single-scan file, the coefficient controller normally creates only
a one-MCU buffer, so input and output processing must run in lockstep in this
case.  jpeg_consume_input() is effectively a no-op in this situation.

The main impact of dividing the decompressor in this fashion is that we must
be very careful with shared variables in the cinfo data structure.  Each
variable that can change during the course of decompression must be
classified as belonging to data input or data output, and each section must
look only at its own variables.  For example, the data output section may not
depend on any of the variables that describe the current scan in the JPEG
file, because these may change as the data input section advances into a new
scan.

The progress monitor is (somewhat arbitrarily) defined to treat input of the
file as one pass when buffered-image mode is not used, and to ignore data
input work completely when buffered-image mode is used.  Note that the
library has no reliable way to predict the number of passes when dealing
with a progressive JPEG file, nor can it predict the number of output passes
in buffered-image mode.  So the work estimate is inherently bogus anyway.

No comparable division is currently made in the compression library, because
there isn't any real need for it.


*** Data formats ***

Arrays of pixel sample values use the following data structure:

    typedef something JSAMPLE;		a pixel component value, 0..MAXJSAMPLE
    typedef JSAMPLE *JSAMPROW;		ptr to a row of samples
    typedef JSAMPROW *JSAMPARRAY;	ptr to a list of rows
    typedef JSAMPARRAY *JSAMPIMAGE;	ptr to a list of color-component arrays

The basic element type JSAMPLE will typically be one of unsigned char,
(signed) char, or short.  Short will be used if samples wider than 8 bits are
to be supported (this is a compile-time option).  Otherwise, unsigned char is
used if possible.  If the compiler only supports signed chars, then it is
necessary to mask off the value when reading.  Thus, all reads of JSAMPLE
values must be coded as "GETJSAMPLE(value)", where the macro will be defined
as "((value) & 0xFF)" on signed-char machines and "((int) (value))" elsewhere.

With these conventions, JSAMPLE values can be assumed to be >= 0.  This helps
simplify correct rounding during downsampling, etc.  The JPEG standard's
specification that sample values run from -128..127 is accommodated by
subtracting 128 just as the sample value is copied into the source array for
the DCT step (this will be an array of signed ints).  Similarly, during
decompression the output of the IDCT step will be immediately shifted back to
0..255.  (NB: different values are required when 12-bit samples are in use.
The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be
defined as 255 and 128 respectively in an 8-bit implementation, and as 4095
and 2048 in a 12-bit implementation.)

We use a pointer per row, rather than a two-dimensional JSAMPLE array.  This
choice costs only a small amount of memory and has several benefits:
* Code using the data structure doesn't need to know the allocated width of
  the rows.  This simplifies edge expansion/compression, since we can work
  in an array that's wider than the logical picture width.
* Indexing doesn't require multiplication; this is a performance win on many
  machines.
* Arrays with more than 64K total elements can be supported even on machines
  where malloc() cannot allocate chunks larger than 64K.
* The rows forming a component array may be allocated at different times
  without extra copying.  This trick allows some speedups in smoothing steps
  that need access to the previous and next rows.

Note that each color component is stored in a separate array; we don't use the
traditional layout in which the components of a pixel are stored together.
This simplifies coding of modules that work on each component independently,
because they don't need to know how many components there are.  Furthermore,
we can read or write each component to a temporary file independently, which
is helpful when dealing with noninterleaved JPEG files.

In general, a specific sample value is accessed by code such as
	GETJSAMPLE(image[colorcomponent][row][col])
where col is measured from the image left edge, but row is measured from the
first sample row currently in memory.  Either of the first two indexings can
be precomputed by copying the relevant pointer.


Since most image-processing applications prefer to work on images in which
the components of a pixel are stored together, the data passed to or from the
surrounding application uses the traditional convention: a single pixel is
represented by N consecutive JSAMPLE values, and an image row is an array of
(# of color components)*(image width) JSAMPLEs.  One or more rows of data can
be represented by a pointer of type JSAMPARRAY in this scheme.  This scheme is
converted to component-wise storage inside the JPEG library.  (Applications
that want to skip JPEG preprocessing or postprocessing will have to contend
with component-wise storage.)


Arrays of DCT-coefficient values use the following data structure:

    typedef short JCOEF;		a 16-bit signed integer
    typedef JCOEF JBLOCK[DCTSIZE2];	an 8x8 block of coefficients
    typedef JBLOCK *JBLOCKROW;		ptr to one horizontal row of 8x8 blocks
    typedef JBLOCKROW *JBLOCKARRAY;	ptr to a list of such rows
    typedef JBLOCKARRAY *JBLOCKIMAGE;	ptr to a list of color component arrays

The underlying type is at least a 16-bit signed integer; while "short" is big
enough on all machines of interest, on some machines it is preferable to use
"int" for speed reasons, despite the storage cost.  Coefficients are grouped
into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than
"8" and "64").

The contents of a coefficient block may be in either "natural" or zigzagged
order, and may be true values or divided by the quantization coefficients,
depending on where the block is in the processing pipeline.  In the current
library, coefficient blocks are kept in natural order everywhere; the entropy
codecs zigzag or dezigzag the data as it is written or read.  The blocks
contain quantized coefficients everywhere outside the DCT/IDCT subsystems.
(This latter decision may need to be revisited to support variable
quantization a la JPEG Part 3.)

Notice that the allocation unit is now a row of 8x8 blocks, corresponding to
eight rows of samples.  Otherwise the structure is much the same as for
samples, and for the same reasons.

On machines where malloc() can't handle a request bigger than 64Kb, this data
structure limits us to rows of less than 512 JBLOCKs, or a picture width of
4000+ pixels.  This seems an acceptable restriction.


On 80x86 machines, the bottom-level pointer types (JSAMPROW and JBLOCKROW)
must be declared as "far" pointers, but the upper levels can be "near"
(implying that the pointer lists are allocated in the DS segment).
We use a #define symbol FAR, which expands to the "far" keyword when
compiling on 80x86 machines and to nothing elsewhere.


*** Suspendable processing ***

In some applications it is desirable to use the JPEG library as an
incremental, memory-to-memory filter.  In this situation the data source or
destination may be a limited-size buffer, and we can't rely on being able to
empty or refill the buffer at arbitrary times.  Instead the application would
like to have control return from the library at buffer overflow/underrun, and
then resume compression or decompression at a later time.

This scenario is supported for simple cases.  (For anything more complex, we
recommend that the application "bite the bullet" and develop real multitasking
capability.)  The libjpeg.doc file goes into more detail about the usage and
limitations of this capability; here we address the implications for library
structure.

The essence of the problem is that the entropy codec (coder or decoder) must
be prepared to stop at arbitrary times.  In turn, the controllers that call
the entropy codec must be able to stop before having produced or consumed all
the data that they normally would handle in one call.  That part is reasonably
straightforward: we make the controller call interfaces include "progress
counters" which indicate the number of data chunks successfully processed, and
we require callers to test the counter rather than just assume all of the data
was processed.

Rather than trying to restart at an arbitrary point, the current Huffman
codecs are designed to restart at the beginning of the current MCU after a
suspension due to buffer overflow/underrun.  At the start of each call, the
codec's internal state is loaded from permanent storage (in the JPEG object
structures) into local variables.  On successful completion of the MCU, the
permanent state is updated.  (This copying is not very expensive, and may even
lead to *improved* performance if the local variables can be registerized.)
If a suspension occurs, the codec simply returns without updating the state,
thus effectively reverting to the start of the MCU.  Note that this implies
leaving some data unprocessed in the source/destination buffer (ie, the
compressed partial MCU).  The data source/destination module interfaces are
specified so as to make this possible.  This also implies that the data buffer
must be large enough to hold a worst-case compressed MCU; a couple thousand
bytes should be enough.

In a successive-approximation AC refinement scan, the progressive Huffman
decoder has to be able to undo assignments of newly nonzero coefficients if it
suspends before the MCU is complete, since decoding requires distinguishing
previously-zero and previously-nonzero coefficients.  This is a bit tedious
but probably won't have much effect on performance.  Other variants of Huffman
decoding need not worry about this, since they will just store the same values
again if forced to repeat the MCU.

This approach would probably not work for an arithmetic codec, since its
modifiable state is quite large and couldn't be copied cheaply.  Instead it
would have to suspend and resume exactly at the point of the buffer end.

The JPEG marker reader is designed to cope with suspension at an arbitrary
point.  It does so by backing up to the start of the marker parameter segment,
so the data buffer must be big enough to hold the largest marker of interest.
Again, a couple KB should be adequate.  (A special "skip" convention is used
to bypass COM and APPn markers, so these can be larger than the buffer size
without causing problems; otherwise a 64K buffer would be needed in the worst
case.)

The JPEG marker writer currently does *not* cope with suspension.  I feel that
this is not necessary; it is much easier simply to require the application to
ensure there is enough buffer space before starting.  (An empty 2K buffer is
more than sufficient for the header markers; and ensuring there are a dozen or
two bytes available before calling jpeg_finish_compress() will suffice for the
trailer.)  This would not work for writing multi-scan JPEG files, but
we simply do not intend to support that capability with suspension.


*** Memory manager services ***

The JPEG library's memory manager controls allocation and deallocation of
memory, and it manages large "virtual" data arrays on machines where the
operating system does not provide virtual memory.  Note that the same
memory manager serves both compression and decompression operations.

In all cases, allocated objects are tied to a particular compression or
decompression master record, and they will be released when that master
record is destroyed.

The memory manager does not provide explicit deallocation of objects.
Instead, objects are created in "pools" of free storage, and a whole pool
can be freed at once.  This approach helps prevent storage-leak bugs, and
it speeds up operations whenever malloc/free are slow (as they often are).
The pools can be regarded as lifetime identifiers for objects.  Two
pools/lifetimes are defined:
  * JPOOL_PERMANENT	lasts until master record is destroyed
  * JPOOL_IMAGE		lasts until done with image (JPEG datastream)
Permanent lifetime is used for parameters and tables that should be carried
across from one datastream to another; this includes all application-visible
parameters.  Image lifetime is used for everything else.  (A third lifetime,
JPOOL_PASS = one processing pass, was originally planned.  However it was
dropped as not being worthwhile.  The actual usage patterns are such that the
peak memory usage would be about the same anyway; and having per-pass storage
substantially complicates the virtual memory allocation rules --- see below.)

The memory manager deals with three kinds of object:
1. "Small" objects.  Typically these require no more than 10K-20K total.
2. "Large" objects.  These may require tens to hundreds of K depending on
   image size.  Semantically they behave the same as small objects, but we
   distinguish them for two reasons:
     * On MS-DOS machines, large objects are referenced by FAR pointers,
       small objects by NEAR pointers.
     * Pool allocation heuristics may differ for large and small objects.
   Note that individual "large" objects cannot exceed the size allowed by
   type size_t, which may be 64K or less on some machines.
3. "Virtual" objects.  These are large 2-D arrays of JSAMPLEs or JBLOCKs
   (typically large enough for the entire image being processed).  The
   memory manager provides stripwise access to these arrays.  On machines
   without virtual memory, the rest of the array may be swapped out to a
   temporary file.

(Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large
objects for the data proper and small objects for the row pointers.  For
convenience and speed, the memory manager provides single routines to create
these structures.  Similarly, virtual arrays include a small control block
and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.)

In the present implementation, virtual arrays are only permitted to have image
lifespan.  (Permanent lifespan would not be reasonable, and pass lifespan is
not very useful since a virtual array's raison d'etre is to store data for
multiple passes through the image.)  We also expect that only "small" objects
will be given permanent lifespan, though this restriction is not required by
the memory manager.

In a non-virtual-memory machine, some performance benefit can be gained by
making the in-memory buffers for virtual arrays be as large as possible.
(For small images, the buffers might fit entirely in memory, so blind
swapping would be very wasteful.)  The memory manager will adjust the height
of the buffers to fit within a prespecified maximum memory usage.  In order
to do this in a reasonably optimal fashion, the manager needs to allocate all
of the virtual arrays at once.  Therefore, there isn't a one-step allocation
routine for virtual arrays; instead, there is a "request" routine that simply
allocates the control block, and a "realize" routine (called just once) that
determines space allocation and creates all of the actual buffers.  The
realize routine must allow for space occupied by non-virtual large objects.
(We don't bother to factor in the space needed for small objects, on the
grounds that it isn't worth the trouble.)

To support all this, we establish the following protocol for doing business
with the memory manager:
  1. Modules must request virtual arrays (which may have only image lifespan)
     during the initial setup phase, i.e., in their jinit_xxx routines.
  2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be
     allocated during initial setup.
  3. realize_virt_arrays will be called at the completion of initial setup.
     The above conventions ensure that sufficient information is available
     for it to choose a good size for virtual array buffers.
Small objects of any lifespan may be allocated at any time.  We expect that
the total space used for small objects will be small enough to be negligible
in the realize_virt_arrays computation.

In a virtual-memory machine, we simply pretend that the available space is
infinite, thus causing realize_virt_arrays to decide that it can allocate all
the virtual arrays as full-size in-memory buffers.  The overhead of the
virtual-array access protocol is very small when no swapping occurs.

A virtual array can be specified to be "pre-zeroed"; when this flag is set,
never-yet-written sections of the array are set to zero before being made
available to the caller.  If this flag is not set, never-written sections
of the array contain garbage.  (This feature exists primarily because the
equivalent logic would otherwise be needed in jdcoefct.c for progressive
JPEG mode; we may as well make it available for possible other uses.)

The first write pass on a virtual array is required to occur in top-to-bottom
order; read passes, as well as any write passes after the first one, may
access the array in any order.  This restriction exists partly to simplify
the virtual array control logic, and partly because some file systems may not
support seeking beyond the current end-of-file in a temporary file.  The main
implication of this restriction is that rearrangement of rows (such as
converting top-to-bottom data order to bottom-to-top) must be handled while
reading data out of the virtual array, not while putting it in.


*** Memory manager internal structure ***

To isolate system dependencies as much as possible, we have broken the
memory manager into two parts.  There is a reasonably system-independent
"front end" (jmemmgr.c) and a "back end" that contains only the code
likely to change across systems.  All of the memory management methods
outlined above are implemented by the front end.  The back end provides
the following routines for use by the front end (none of these routines
are known to the rest of the JPEG code):

jpeg_mem_init, jpeg_mem_term	system-dependent initialization/shutdown

jpeg_get_small, jpeg_free_small	interface to malloc and free library routines
				(or their equivalents)

jpeg_get_large, jpeg_free_large	interface to FAR malloc/free in MSDOS machines;
				else usually the same as
				jpeg_get_small/jpeg_free_small

jpeg_mem_available		estimate available memory

jpeg_open_backing_store		create a backing-store object

read_backing_store,		manipulate a backing-store object
write_backing_store,
close_backing_store

On some systems there will be more than one type of backing-store object
(specifically, in MS-DOS a backing store file might be an area of extended
memory as well as a disk file).  jpeg_open_backing_store is responsible for
choosing how to implement a given object.  The read/write/close routines
are method pointers in the structure that describes a given object; this
lets them be different for different object types.

It may be necessary to ensure that backing store objects are explicitly
released upon abnormal program termination.  For example, MS-DOS won't free
extended memory by itself.  To support this, we will expect the main program
or surrounding application to arrange to call self_destruct (typically via
jpeg_destroy) upon abnormal termination.  This may require a SIGINT signal
handler or equivalent.  We don't want to have the back end module install its
own signal handler, because that would pre-empt the surrounding application's
ability to control signal handling.

The IJG distribution includes several memory manager back end implementations.
Usually the same back end should be suitable for all applications on a given
system, but it is possible for an application to supply its own back end at
need.


*** Implications of DNL marker ***

Some JPEG files may use a DNL marker to postpone definition of the image
height (this would be useful for a fax-like scanner's output, for instance).
In these files the SOF marker claims the image height is 0, and you only
find out the true image height at the end of the first scan.

We could read these files as follows:
1. Upon seeing zero image height, replace it by 65535 (the maximum allowed).
2. When the DNL is found, update the image height in the global image
   descriptor.
This implies that control modules must avoid making copies of the image
height, and must re-test for termination after each MCU row.  This would
be easy enough to do.

In cases where image-size data structures are allocated, this approach will
result in very inefficient use of virtual memory or much-larger-than-necessary
temporary files.  This seems acceptable for something that probably won't be a
mainstream usage.  People might have to forgo use of memory-hogging options
(such as two-pass color quantization or noninterleaved JPEG files) if they
want efficient conversion of such files.  (One could improve efficiency by
demanding a user-supplied upper bound for the height, less than 65536; in most
cases it could be much less.)

The standard also permits the SOF marker to overestimate the image height,
with a DNL to give the true, smaller height at the end of the first scan.
This would solve the space problems if the overestimate wasn't too great.
However, it implies that you don't even know whether DNL will be used.

This leads to a couple of very serious objections:
1. Testing for a DNL marker must occur in the inner loop of the decompressor's
   Huffman decoder; this implies a speed penalty whether the feature is used
   or not.
2. There is no way to hide the last-minute change in image height from an
   application using the decoder.  Thus *every* application using the IJG
   library would suffer a complexity penalty whether it cared about DNL or
   not.
We currently do not support DNL because of these problems.

A different approach is to insist that DNL-using files be preprocessed by a
separate program that reads ahead to the DNL, then goes back and fixes the SOF
marker.  This is a much simpler solution and is probably far more efficient.
Even if one wants piped input, buffering the first scan of the JPEG file needs
a lot smaller temp file than is implied by the maximum-height method.  For
this approach we'd simply treat DNL as a no-op in the decompressor (at most,
check that it matches the SOF image height).

We will not worry about making the compressor capable of outputting DNL.
Something similar to the first scheme above could be applied if anyone ever
wants to make that work.

--- NEW FILE: jquant2.c ---
/*
 * jquant2.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains 2-pass color quantization (color mapping) routines.
 * These routines provide selection of a custom color map for an image,
 * followed by mapping of the image to that color map, with optional
 * Floyd-Steinberg dithering.
 * It is also possible to use just the second pass to map to an arbitrary
 * externally-given color map.
 *
 * Note: ordered dithering is not supported, since there isn't any fast
 * way to compute intercolor distances; it's unclear that ordered dither's
 * fundamental assumptions even hold with an irregularly spaced color map.
 */

[...1271 lines suppressed...]
  /* Only F-S dithering or no dithering is supported. */
  /* If user asks for ordered dither, give him F-S. */
  if (cinfo->dither_mode != JDITHER_NONE)
    cinfo->dither_mode = JDITHER_FS;

  /* Allocate Floyd-Steinberg workspace if necessary.
   * This isn't really needed until pass 2, but again it is FAR storage.
   * Although we will cope with a later change in dither_mode,
   * we do not promise to honor max_memory_to_use if dither_mode changes.
   */
  if (cinfo->dither_mode == JDITHER_FS) {
    cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
    /* Might as well create the error-limiting table too. */
    init_error_limit(cinfo);
  }
}

#endif /* QUANT_2PASS_SUPPORTED */

--- NEW FILE: jinclude.h ---
/*
 * jinclude.h
 *
 * Copyright (C) 1991-1994, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file exists to provide a single place to fix any problems with
 * including the wrong system include files.  (Common problems are taken
 * care of by the standard jconfig symbols, but on really weird systems
 * you may have to edit this file.)
 *
 * NOTE: this file is NOT intended to be included by applications using the
 * JPEG library.  Most applications need only include jpeglib.h.
 */


/* Include auto-config file to find out which system include files we need. */

#include "jconfig.h"		/* auto configuration options */
#define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */

/*
 * We need the NULL macro and size_t typedef.
 * On an ANSI-conforming system it is sufficient to include <stddef.h>.
 * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
 * pull in <sys/types.h> as well.
 * Note that the core JPEG library does not require <stdio.h>;
 * only the default error handler and data source/destination modules do.
 * But we must pull it in because of the references to FILE in jpeglib.h.
 * You can remove those references if you want to compile without <stdio.h>.
 */

#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif

#include <stdio.h>

/*
 * We need memory copying and zeroing functions, plus strncpy().
 * ANSI and System V implementations declare these in <string.h>.
 * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
 * Some systems may declare memset and memcpy in <memory.h>.
 *
 * NOTE: we assume the size parameters to these functions are of type size_t.
 * Change the casts in these macros if not!
 */

#ifdef NEED_BSD_STRINGS

#include <strings.h>
#define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size))

#else /* not BSD, assume ANSI/SysV string lib */

#include <string.h>
#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))

#endif

/*
 * In ANSI C, and indeed any rational implementation, size_t is also the
 * type returned by sizeof().  However, it seems there are some irrational
 * implementations out there, in which sizeof() returns an int even though
 * size_t is defined as long or unsigned long.  To ensure consistent results
 * we always use this SIZEOF() macro in place of using sizeof() directly.
 */

#define SIZEOF(object)	((size_t) sizeof(object))

/*
 * The modules that use fread() and fwrite() always invoke them through
 * these macros.  On some systems you may need to twiddle the argument casts.
 * CAUTION: argument order is different from underlying functions!
 */

#define JFREAD(file,buf,sizeofbuf)  \
  ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf)  \
  ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))

--- NEW FILE: jmemname.c ---
/*
 * jmemname.c
 *
 * Copyright (C) 1992-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file provides a generic implementation of the system-dependent
 * portion of the JPEG memory manager.  This implementation assumes that
 * you must explicitly construct a name for each temp file.
 * Also, the problem of determining the amount of memory available
 * is shoved onto the user.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h"		/* import the system-dependent declarations */

#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif

#ifndef SEEK_SET		/* pre-ANSI systems may not define this; */
#define SEEK_SET  0		/* if not, assume 0 is correct */
#endif

#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */
#define READ_BINARY	"r"
#define RW_BINARY	"w+"
#else
#ifdef VMS			/* VMS is very nonstandard */
#define READ_BINARY	"rb", "ctx=stm"
#define RW_BINARY	"w+b", "ctx=stm"
#else				/* standard ANSI-compliant case */
#define READ_BINARY	"rb"
#define RW_BINARY	"w+b"
#endif
#endif


/*
 * Selection of a file name for a temporary file.
 * This is system-dependent!
 *
 * The code as given is suitable for most Unix systems, and it is easily
 * modified for most non-Unix systems.  Some notes:
 *  1.  The temp file is created in the directory named by TEMP_DIRECTORY.
 *      The default value is /usr/tmp, which is the conventional place for
 *      creating large temp files on Unix.  On other systems you'll probably
 *      want to change the file location.  You can do this by editing the
 *      #define, or (preferred) by defining TEMP_DIRECTORY in jconfig.h.
 *
 *  2.  If you need to change the file name as well as its location,
 *      you can override the TEMP_FILE_NAME macro.  (Note that this is
 *      actually a printf format string; it must contain %s and %d.)
 *      Few people should need to do this.
 *
 *  3.  mktemp() is used to ensure that multiple processes running
 *      simultaneously won't select the same file names.  If your system
 *      doesn't have mktemp(), define NO_MKTEMP to do it the hard way.
 *      (If you don't have <errno.h>, also define NO_ERRNO_H.)
 *
 *  4.  You probably want to define NEED_SIGNAL_CATCHER so that cjpeg.c/djpeg.c
 *      will cause the temp files to be removed if you stop the program early.
 */

#ifndef TEMP_DIRECTORY		/* can override from jconfig.h or Makefile */
#define TEMP_DIRECTORY  "/usr/tmp/" /* recommended setting for Unix */
#endif

static int next_file_num;	/* to distinguish among several temp files */

#ifdef NO_MKTEMP

#ifndef TEMP_FILE_NAME		/* can override from jconfig.h or Makefile */
#define TEMP_FILE_NAME  "%sJPG%03d.TMP"
#endif

#ifndef NO_ERRNO_H
#include <errno.h>		/* to define ENOENT */
#endif

/* ANSI C specifies that errno is a macro, but on older systems it's more
 * likely to be a plain int variable.  And not all versions of errno.h
 * bother to declare it, so we have to in order to be most portable.  Thus:
 */
#ifndef errno
extern int errno;
#endif


LOCAL(void)
select_file_name (char * fname)
{
  FILE * tfile;

  /* Keep generating file names till we find one that's not in use */
  for (;;) {
    next_file_num++;		/* advance counter */
    sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
    if ((tfile = fopen(fname, READ_BINARY)) == NULL) {
      /* fopen could have failed for a reason other than the file not
       * being there; for example, file there but unreadable.
       * If <errno.h> isn't available, then we cannot test the cause.
       */
#ifdef ENOENT
      if (errno != ENOENT)
	continue;
#endif
      break;
    }
    fclose(tfile);		/* oops, it's there; close tfile & try again */
  }
}

#else /* ! NO_MKTEMP */

/* Note that mktemp() requires the initial filename to end in six X's */
#ifndef TEMP_FILE_NAME		/* can override from jconfig.h or Makefile */
#define TEMP_FILE_NAME  "%sJPG%dXXXXXX"
#endif

LOCAL(void)
select_file_name (char * fname)
{
  next_file_num++;		/* advance counter */
  sprintf(fname, TEMP_FILE_NAME, TEMP_DIRECTORY, next_file_num);
  mktemp(fname);		/* make sure file name is unique */
  /* mktemp replaces the trailing XXXXXX with a unique string of characters */
}

#endif /* NO_MKTEMP */


/*
 * Memory allocation and freeing are controlled by the regular library
 * routines malloc() and free().
 */

GLOBAL(void *)
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
{
  return (void *) malloc(sizeofobject);
}

GLOBAL(void)
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
{
  free(object);
}


/*
 * "Large" objects are treated the same as "small" ones.
 * NB: although we include FAR keywords in the routine declarations,
 * this file won't actually work in 80x86 small/medium model; at least,
 * you probably won't be able to process useful-size images in only 64KB.
 */

GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
{
  return (void FAR *) malloc(sizeofobject);
}

GLOBAL(void)
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
{
  free(object);
}


/*
 * This routine computes the total memory space available for allocation.
 * It's impossible to do this in a portable way; our current solution is
 * to make the user tell us (with a default value set at compile time).
 * If you can actually get the available space, it's a good idea to subtract
 * a slop factor of 5% or so.
 */

#ifndef DEFAULT_MAX_MEM		/* so can override from makefile */
#define DEFAULT_MAX_MEM		1000000L /* default: one megabyte */
#endif

GLOBAL(long)
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
		    long max_bytes_needed, long already_allocated)
{
  return cinfo->mem->max_memory_to_use - already_allocated;
}


/*
 * Backing store (temporary file) management.
 * Backing store objects are only used when the value returned by
 * jpeg_mem_available is less than the total space needed.  You can dispense
 * with these routines if you have plenty of virtual memory; see jmemnobs.c.
 */


METHODDEF(void)
read_backing_store (j_common_ptr cinfo, backing_store_ptr info,
		    void FAR * buffer_address,
		    long file_offset, long byte_count)
{
  if (fseek(info->temp_file, file_offset, SEEK_SET))
    ERREXIT(cinfo, JERR_TFILE_SEEK);
  if (JFREAD(info->temp_file, buffer_address, byte_count)
      != (size_t) byte_count)
    ERREXIT(cinfo, JERR_TFILE_READ);
}


METHODDEF(void)
write_backing_store (j_common_ptr cinfo, backing_store_ptr info,
		     void FAR * buffer_address,
		     long file_offset, long byte_count)
{
  if (fseek(info->temp_file, file_offset, SEEK_SET))
    ERREXIT(cinfo, JERR_TFILE_SEEK);
  if (JFWRITE(info->temp_file, buffer_address, byte_count)
      != (size_t) byte_count)
    ERREXIT(cinfo, JERR_TFILE_WRITE);
}


METHODDEF(void)
close_backing_store (j_common_ptr cinfo, backing_store_ptr info)
{
  fclose(info->temp_file);	/* close the file */
  unlink(info->temp_name);	/* delete the file */
/* If your system doesn't have unlink(), use remove() instead.
 * remove() is the ANSI-standard name for this function, but if
 * your system was ANSI you'd be using jmemansi.c, right?
 */
  TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
}


/*
 * Initial opening of a backing-store object.
 */

GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
			 long total_bytes_needed)
{
  select_file_name(info->temp_name);
  if ((info->temp_file = fopen(info->temp_name, RW_BINARY)) == NULL)
    ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
  info->read_backing_store = read_backing_store;
  info->write_backing_store = write_backing_store;
  info->close_backing_store = close_backing_store;
  TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
}


/*
 * These routines take care of any system-dependent initialization and
 * cleanup required.
 */

GLOBAL(long)
jpeg_mem_init (j_common_ptr cinfo)
{
  next_file_num = 0;		/* initialize temp file name generator */
  return DEFAULT_MAX_MEM;	/* default for max_memory_to_use */
}

GLOBAL(void)
jpeg_mem_term (j_common_ptr cinfo)
{
  /* no work */
}

--- NEW FILE: jconfig.sas ---
/* jconfig.sas --- jconfig.h for Amiga systems using SAS C 6.0 and up. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#undef CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#define TEMP_DIRECTORY "JPEGTMP:"	/* recommended setting for Amiga */

#define NO_MKTEMP		/* SAS C doesn't have mktemp() */

#define SHORTxSHORT_32		/* produces better DCT code with SAS C */

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#define TWO_FILE_COMMANDLINE
#define NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: jdapistd.c ---
/*
 * jdapistd.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains application interface code for the decompression half
 * of the JPEG library.  These are the "standard" API routines that are
 * used in the normal full-decompression case.  They are not used by a
 * transcoding-only application.  Note that if an application links in
 * jpeg_start_decompress, it will end up linking in the entire decompressor.
 * We thus must separate this file from jdapimin.c to avoid linking the
 * whole decompression library into a transcoder.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Forward declarations */
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo));


/*
 * Decompression initialization.
 * jpeg_read_header must be completed before calling this.
 *
 * If a multipass operating mode was selected, this will do all but the
 * last pass, and thus may take a great deal of time.
 *
 * Returns FALSE if suspended.  The return value need be inspected only if
 * a suspending data source is used.
 */

GLOBAL(boolean)
jpeg_start_decompress (j_decompress_ptr cinfo)
{
  if (cinfo->global_state == DSTATE_READY) {
    /* First call: initialize master control, select active modules */
    jinit_master_decompress(cinfo);
    if (cinfo->buffered_image) {
      /* No more work here; expecting jpeg_start_output next */
      cinfo->global_state = DSTATE_BUFIMAGE;
      return TRUE;
    }
    cinfo->global_state = DSTATE_PRELOAD;
  }
  if (cinfo->global_state == DSTATE_PRELOAD) {
    /* If file has multiple scans, absorb them all into the coef buffer */
    if (cinfo->inputctl->has_multiple_scans) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
      for (;;) {
	int retcode;
	/* Call progress monitor hook if present */
	if (cinfo->progress != NULL)
	  (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
	/* Absorb some more input */
	retcode = (*cinfo->inputctl->consume_input) (cinfo);
	if (retcode == JPEG_SUSPENDED)
	  return FALSE;
	if (retcode == JPEG_REACHED_EOI)
	  break;
	/* Advance progress counter if appropriate */
	if (cinfo->progress != NULL &&
	    (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
	  if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
	    /* jdmaster underestimated number of scans; ratchet up one scan */
	    cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
	  }
	}
      }
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* D_MULTISCAN_FILES_SUPPORTED */
    }
    cinfo->output_scan_number = cinfo->input_scan_number;
  } else if (cinfo->global_state != DSTATE_PRESCAN)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  /* Perform any dummy output passes, and set up for the final pass */
  return output_pass_setup(cinfo);
}


/*
 * Set up for an output pass, and perform any dummy pass(es) needed.
 * Common subroutine for jpeg_start_decompress and jpeg_start_output.
 * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
 * Exit: If done, returns TRUE and sets global_state for proper output mode.
 *       If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
 */

LOCAL(boolean)
output_pass_setup (j_decompress_ptr cinfo)
{
  if (cinfo->global_state != DSTATE_PRESCAN) {
    /* First call: do pass setup */
    (*cinfo->master->prepare_for_output_pass) (cinfo);
    cinfo->output_scanline = 0;
    cinfo->global_state = DSTATE_PRESCAN;
  }
  /* Loop over any required dummy passes */
  while (cinfo->master->is_dummy_pass) {
#ifdef QUANT_2PASS_SUPPORTED
    /* Crank through the dummy pass */
    while (cinfo->output_scanline < cinfo->output_height) {
      JDIMENSION last_scanline;
      /* Call progress monitor hook if present */
      if (cinfo->progress != NULL) {
	cinfo->progress->pass_counter = (long) cinfo->output_scanline;
	cinfo->progress->pass_limit = (long) cinfo->output_height;
	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
      }
      /* Process some data */
      last_scanline = cinfo->output_scanline;
      (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
				    &cinfo->output_scanline, (JDIMENSION) 0);
      if (cinfo->output_scanline == last_scanline)
	return FALSE;		/* No progress made, must suspend */
    }
    /* Finish up dummy pass, and set up for another one */
    (*cinfo->master->finish_output_pass) (cinfo);
    (*cinfo->master->prepare_for_output_pass) (cinfo);
    cinfo->output_scanline = 0;
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif /* QUANT_2PASS_SUPPORTED */
  }
  /* Ready for application to drive output pass through
   * jpeg_read_scanlines or jpeg_read_raw_data.
   */
  cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
  return TRUE;
}


/*
 * Read some scanlines of data from the JPEG decompressor.
 *
 * The return value will be the number of lines actually read.
 * This may be less than the number requested in several cases,
 * including bottom of image, data source suspension, and operating
 * modes that emit multiple scanlines at a time.
 *
 * Note: we warn about excess calls to jpeg_read_scanlines() since
 * this likely signals an application programmer error.  However,
 * an oversize buffer (max_lines > scanlines remaining) is not an error.
 */

GLOBAL(JDIMENSION)
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
		     JDIMENSION max_lines)
{
  JDIMENSION row_ctr;

  if (cinfo->global_state != DSTATE_SCANNING)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  if (cinfo->output_scanline >= cinfo->output_height) {
    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
    return 0;
  }

  /* Call progress monitor hook if present */
  if (cinfo->progress != NULL) {
    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
    cinfo->progress->pass_limit = (long) cinfo->output_height;
    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
  }

  /* Process some data */
  row_ctr = 0;
  (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
  cinfo->output_scanline += row_ctr;
  return row_ctr;
}


/*
 * Alternate entry point to read raw data.
 * Processes exactly one iMCU row per call, unless suspended.
 */

GLOBAL(JDIMENSION)
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
		    JDIMENSION max_lines)
{
  JDIMENSION lines_per_iMCU_row;

  if (cinfo->global_state != DSTATE_RAW_OK)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  if (cinfo->output_scanline >= cinfo->output_height) {
    WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
    return 0;
  }

  /* Call progress monitor hook if present */
  if (cinfo->progress != NULL) {
    cinfo->progress->pass_counter = (long) cinfo->output_scanline;
    cinfo->progress->pass_limit = (long) cinfo->output_height;
    (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
  }

  /* Verify that at least one iMCU row can be returned. */
  lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
  if (max_lines < lines_per_iMCU_row)
    ERREXIT(cinfo, JERR_BUFFER_SIZE);

  /* Decompress directly into user's buffer. */
  if (! (*cinfo->coef->decompress_data) (cinfo, data))
    return 0;			/* suspension forced, can do nothing more */

  /* OK, we processed one iMCU row. */
  cinfo->output_scanline += lines_per_iMCU_row;
  return lines_per_iMCU_row;
}


/* Additional entry points for buffered-image mode. */

#ifdef D_MULTISCAN_FILES_SUPPORTED

/*
 * Initialize for an output pass in buffered-image mode.
 */

GLOBAL(boolean)
jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
{
  if (cinfo->global_state != DSTATE_BUFIMAGE &&
      cinfo->global_state != DSTATE_PRESCAN)
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  /* Limit scan number to valid range */
  if (scan_number <= 0)
    scan_number = 1;
  if (cinfo->inputctl->eoi_reached &&
      scan_number > cinfo->input_scan_number)
    scan_number = cinfo->input_scan_number;
  cinfo->output_scan_number = scan_number;
  /* Perform any dummy output passes, and set up for the real pass */
  return output_pass_setup(cinfo);
}


/*
 * Finish up after an output pass in buffered-image mode.
 *
 * Returns FALSE if suspended.  The return value need be inspected only if
 * a suspending data source is used.
 */

GLOBAL(boolean)
jpeg_finish_output (j_decompress_ptr cinfo)
{
  if ((cinfo->global_state == DSTATE_SCANNING ||
       cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
    /* Terminate this pass. */
    /* We do not require the whole pass to have been completed. */
    (*cinfo->master->finish_output_pass) (cinfo);
    cinfo->global_state = DSTATE_BUFPOST;
  } else if (cinfo->global_state != DSTATE_BUFPOST) {
    /* BUFPOST = repeat call after a suspension, anything else is error */
    ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  }
  /* Read markers looking for SOS or EOI */
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
	 ! cinfo->inputctl->eoi_reached) {
    if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
      return FALSE;		/* Suspend, come back later */
  }
  cinfo->global_state = DSTATE_BUFIMAGE;
  return TRUE;
}

#endif /* D_MULTISCAN_FILES_SUPPORTED */

--- NEW FILE: jmemdos.c ---
/*
 * jmemdos.c
 *
 * Copyright (C) 1992-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file provides an MS-DOS-compatible implementation of the system-
 * dependent portion of the JPEG memory manager.  Temporary data can be
 * stored in extended or expanded memory as well as in regular DOS files.
 *
 * If you use this file, you must be sure that NEED_FAR_POINTERS is defined
 * if you compile in a small-data memory model; it should NOT be defined if
 * you use a large-data memory model.  This file is not recommended if you
 * are using a flat-memory-space 386 environment such as DJGCC or Watcom C.
 * Also, this code will NOT work if struct fields are aligned on greater than
 * 2-byte boundaries.
 *
 * Based on code contributed by Ge' Weijers.
 */

/*
 * If you have both extended and expanded memory, you may want to change the
 * order in which they are tried in jopen_backing_store.  On a 286 machine
 * expanded memory is usually faster, since extended memory access involves
 * an expensive protected-mode-and-back switch.  On 386 and better, extended
 * memory is usually faster.  As distributed, the code tries extended memory
 * first (what? not everyone has a 386? :-).
 *
 * You can disable use of extended/expanded memory entirely by altering these
 * definitions or overriding them from the Makefile (eg, -DEMS_SUPPORTED=0).
 */

#ifndef XMS_SUPPORTED
#define XMS_SUPPORTED  1
#endif
#ifndef EMS_SUPPORTED
#define EMS_SUPPORTED  1
#endif


#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h"		/* import the system-dependent declarations */

#ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare these */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
extern char * getenv JPP((const char * name));
#endif

#ifdef NEED_FAR_POINTERS

#ifdef __TURBOC__
/* These definitions work for Borland C (Turbo C) */
#include <alloc.h>		/* need farmalloc(), farfree() */
#define far_malloc(x)	farmalloc(x)
#define far_free(x)	farfree(x)
#else
/* These definitions work for Microsoft C and compatible compilers */
#include <malloc.h>		/* need _fmalloc(), _ffree() */
#define far_malloc(x)	_fmalloc(x)
#define far_free(x)	_ffree(x)
#endif

#else /* not NEED_FAR_POINTERS */

#define far_malloc(x)	malloc(x)
#define far_free(x)	free(x)

#endif /* NEED_FAR_POINTERS */

#ifdef DONT_USE_B_MODE		/* define mode parameters for fopen() */
#define READ_BINARY	"r"
#else
#define READ_BINARY	"rb"
#endif

#ifndef USE_MSDOS_MEMMGR	/* make sure user got configuration right */
  You forgot to define USE_MSDOS_MEMMGR in jconfig.h. /* deliberate syntax error */
#endif

#if MAX_ALLOC_CHUNK >= 65535L	/* make sure jconfig.h got this right */
  MAX_ALLOC_CHUNK should be less than 64K. /* deliberate syntax error */
#endif


/*
 * Declarations for assembly-language support routines (see jmemdosa.asm).
 *
 * The functions are declared "far" as are all their pointer arguments;
 * this ensures the assembly source code will work regardless of the
 * compiler memory model.  We assume "short" is 16 bits, "long" is 32.
 */

typedef void far * XMSDRIVER;	/* actually a pointer to code */
typedef struct {		/* registers for calling XMS driver */
	unsigned short ax, dx, bx;
	void far * ds_si;
      } XMScontext;
typedef struct {		/* registers for calling EMS driver */
	unsigned short ax, dx, bx;
	void far * ds_si;
      } EMScontext;

extern short far jdos_open JPP((short far * handle, char far * filename));
extern short far jdos_close JPP((short handle));
extern short far jdos_seek JPP((short handle, long offset));
extern short far jdos_read JPP((short handle, void far * buffer,
				unsigned short count));
extern short far jdos_write JPP((short handle, void far * buffer,
				 unsigned short count));
extern void far jxms_getdriver JPP((XMSDRIVER far *));
extern void far jxms_calldriver JPP((XMSDRIVER, XMScontext far *));
extern short far jems_available JPP((void));
extern void far jems_calldriver JPP((EMScontext far *));


/*
 * Selection of a file name for a temporary file.
 * This is highly system-dependent, and you may want to customize it.
 */

static int next_file_num;	/* to distinguish among several temp files */

LOCAL(void)
select_file_name (char * fname)
{
  const char * env;
  char * ptr;
  FILE * tfile;

  /* Keep generating file names till we find one that's not in use */
  for (;;) {
    /* Get temp directory name from environment TMP or TEMP variable;
     * if none, use "."
     */
    if ((env = (const char *) getenv("TMP")) == NULL)
      if ((env = (const char *) getenv("TEMP")) == NULL)
	env = ".";
    if (*env == '\0')		/* null string means "." */
      env = ".";
    ptr = fname;		/* copy name to fname */
    while (*env != '\0')
      *ptr++ = *env++;
    if (ptr[-1] != '\\' && ptr[-1] != '/')
      *ptr++ = '\\';		/* append backslash if not in env variable */
    /* Append a suitable file name */
    next_file_num++;		/* advance counter */
    sprintf(ptr, "JPG%03d.TMP", next_file_num);
    /* Probe to see if file name is already in use */
    if ((tfile = fopen(fname, READ_BINARY)) == NULL)
      break;
    fclose(tfile);		/* oops, it's there; close tfile & try again */
  }
}


/*
 * Near-memory allocation and freeing are controlled by the regular library
 * routines malloc() and free().
 */

GLOBAL(void *)
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
{
  return (void *) malloc(sizeofobject);
}

GLOBAL(void)
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
{
  free(object);
}


/*
 * "Large" objects are allocated in far memory, if possible
 */

GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
{
  return (void FAR *) far_malloc(sizeofobject);
}

GLOBAL(void)
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
{
  far_free(object);
}


/*
 * This routine computes the total memory space available for allocation.
 * It's impossible to do this in a portable way; our current solution is
 * to make the user tell us (with a default value set at compile time).
 * If you can actually get the available space, it's a good idea to subtract
 * a slop factor of 5% or so.
 */

#ifndef DEFAULT_MAX_MEM		/* so can override from makefile */
#define DEFAULT_MAX_MEM		300000L /* for total usage about 450K */
#endif

GLOBAL(long)
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
		    long max_bytes_needed, long already_allocated)
{
  return cinfo->mem->max_memory_to_use - already_allocated;
}


/*
 * Backing store (temporary file) management.
 * Backing store objects are only used when the value returned by
 * jpeg_mem_available is less than the total space needed.  You can dispense
 * with these routines if you have plenty of virtual memory; see jmemnobs.c.
 */

/*
 * For MS-DOS we support three types of backing storage:
 *   1. Conventional DOS files.  We access these by direct DOS calls rather
 *      than via the stdio package.  This provides a bit better performance,
 *      but the real reason is that the buffers to be read or written are FAR.
 *      The stdio library for small-data memory models can't cope with that.
 *   2. Extended memory, accessed per the XMS V2.0 specification.
 *   3. Expanded memory, accessed per the LIM/EMS 4.0 specification.
 * You'll need copies of those specs to make sense of the related code.
 * The specs are available by Internet FTP from the SIMTEL archives 
 * (oak.oakland.edu and its various mirror sites).  See files
 * pub/msdos/microsoft/xms20.arc and pub/msdos/info/limems41.zip.
 */


/*
 * Access methods for a DOS file.
 */


METHODDEF(void)
read_file_store (j_common_ptr cinfo, backing_store_ptr info,
		 void FAR * buffer_address,
		 long file_offset, long byte_count)
{
  if (jdos_seek(info->handle.file_handle, file_offset))
    ERREXIT(cinfo, JERR_TFILE_SEEK);
  /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
  if (byte_count > 65535L)	/* safety check */
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
  if (jdos_read(info->handle.file_handle, buffer_address,
		(unsigned short) byte_count))
    ERREXIT(cinfo, JERR_TFILE_READ);
}


METHODDEF(void)
write_file_store (j_common_ptr cinfo, backing_store_ptr info,
		  void FAR * buffer_address,
		  long file_offset, long byte_count)
{
  if (jdos_seek(info->handle.file_handle, file_offset))
    ERREXIT(cinfo, JERR_TFILE_SEEK);
  /* Since MAX_ALLOC_CHUNK is less than 64K, byte_count will be too. */
  if (byte_count > 65535L)	/* safety check */
    ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
  if (jdos_write(info->handle.file_handle, buffer_address,
		 (unsigned short) byte_count))
    ERREXIT(cinfo, JERR_TFILE_WRITE);
}


METHODDEF(void)
close_file_store (j_common_ptr cinfo, backing_store_ptr info)
{
  jdos_close(info->handle.file_handle);	/* close the file */
  remove(info->temp_name);	/* delete the file */
/* If your system doesn't have remove(), try unlink() instead.
 * remove() is the ANSI-standard name for this function, but
 * unlink() was more common in pre-ANSI systems.
 */
  TRACEMSS(cinfo, 1, JTRC_TFILE_CLOSE, info->temp_name);
}


LOCAL(boolean)
open_file_store (j_common_ptr cinfo, backing_store_ptr info,
		 long total_bytes_needed)
{
  short handle;

  select_file_name(info->temp_name);
  if (jdos_open((short far *) & handle, (char far *) info->temp_name)) {
    /* might as well exit since jpeg_open_backing_store will fail anyway */
    ERREXITS(cinfo, JERR_TFILE_CREATE, info->temp_name);
    return FALSE;
  }
  info->handle.file_handle = handle;
  info->read_backing_store = read_file_store;
  info->write_backing_store = write_file_store;
  info->close_backing_store = close_file_store;
  TRACEMSS(cinfo, 1, JTRC_TFILE_OPEN, info->temp_name);
  return TRUE;			/* succeeded */
}


/*
 * Access methods for extended memory.
 */

#if XMS_SUPPORTED

static XMSDRIVER xms_driver;	/* saved address of XMS driver */

typedef union {			/* either long offset or real-mode pointer */
	long offset;
	void far * ptr;
      } XMSPTR;

typedef struct {		/* XMS move specification structure */
	long length;
	XMSH src_handle;
	XMSPTR src;
	XMSH dst_handle;
	XMSPTR dst;
      } XMSspec;

#define ODD(X)	(((X) & 1L) != 0)


METHODDEF(void)
read_xms_store (j_common_ptr cinfo, backing_store_ptr info,
		void FAR * buffer_address,
		long file_offset, long byte_count)
{
  XMScontext ctx;
  XMSspec spec;
  char endbuffer[2];

  /* The XMS driver can't cope with an odd length, so handle the last byte
   * specially if byte_count is odd.  We don't expect this to be common.
   */

  spec.length = byte_count & (~ 1L);
  spec.src_handle = info->handle.xms_handle;
  spec.src.offset = file_offset;
  spec.dst_handle = 0;
  spec.dst.ptr = buffer_address;
  
  ctx.ds_si = (void far *) & spec;
  ctx.ax = 0x0b00;		/* EMB move */
  jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
  if (ctx.ax != 1)
    ERREXIT(cinfo, JERR_XMS_READ);

  if (ODD(byte_count)) {
    read_xms_store(cinfo, info, (void FAR *) endbuffer,
		   file_offset + byte_count - 1L, 2L);
    ((char FAR *) buffer_address)[byte_count - 1L] = endbuffer[0];
  }
}


METHODDEF(void)
write_xms_store (j_common_ptr cinfo, backing_store_ptr info,
		 void FAR * buffer_address,
		 long file_offset, long byte_count)
{
  XMScontext ctx;
  XMSspec spec;
  char endbuffer[2];

  /* The XMS driver can't cope with an odd length, so handle the last byte
   * specially if byte_count is odd.  We don't expect this to be common.
   */

  spec.length = byte_count & (~ 1L);
  spec.src_handle = 0;
  spec.src.ptr = buffer_address;
  spec.dst_handle = info->handle.xms_handle;
  spec.dst.offset = file_offset;

  ctx.ds_si = (void far *) & spec;
  ctx.ax = 0x0b00;		/* EMB move */
  jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
  if (ctx.ax != 1)
    ERREXIT(cinfo, JERR_XMS_WRITE);

  if (ODD(byte_count)) {
    read_xms_store(cinfo, info, (void FAR *) endbuffer,
		   file_offset + byte_count - 1L, 2L);
    endbuffer[0] = ((char FAR *) buffer_address)[byte_count - 1L];
    write_xms_store(cinfo, info, (void FAR *) endbuffer,
		    file_offset + byte_count - 1L, 2L);
  }
}


METHODDEF(void)
close_xms_store (j_common_ptr cinfo, backing_store_ptr info)
{
  XMScontext ctx;

  ctx.dx = info->handle.xms_handle;
  ctx.ax = 0x0a00;
  jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
  TRACEMS1(cinfo, 1, JTRC_XMS_CLOSE, info->handle.xms_handle);
  /* we ignore any error return from the driver */
}


LOCAL(boolean)
open_xms_store (j_common_ptr cinfo, backing_store_ptr info,
		long total_bytes_needed)
{
  XMScontext ctx;

  /* Get address of XMS driver */
  jxms_getdriver((XMSDRIVER far *) & xms_driver);
  if (xms_driver == NULL)
    return FALSE;		/* no driver to be had */

  /* Get version number, must be >= 2.00 */
  ctx.ax = 0x0000;
  jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
  if (ctx.ax < (unsigned short) 0x0200)
    return FALSE;

  /* Try to get space (expressed in kilobytes) */
  ctx.dx = (unsigned short) ((total_bytes_needed + 1023L) >> 10);
  ctx.ax = 0x0900;
  jxms_calldriver(xms_driver, (XMScontext far *) & ctx);
  if (ctx.ax != 1)
    return FALSE;

  /* Succeeded, save the handle and away we go */
  info->handle.xms_handle = ctx.dx;
  info->read_backing_store = read_xms_store;
  info->write_backing_store = write_xms_store;
  info->close_backing_store = close_xms_store;
  TRACEMS1(cinfo, 1, JTRC_XMS_OPEN, ctx.dx);
  return TRUE;			/* succeeded */
}

#endif /* XMS_SUPPORTED */


/*
 * Access methods for expanded memory.
 */

#if EMS_SUPPORTED

/* The EMS move specification structure requires word and long fields aligned
 * at odd byte boundaries.  Some compilers will align struct fields at even
 * byte boundaries.  While it's usually possible to force byte alignment,
 * that causes an overall performance penalty and may pose problems in merging
 * JPEG into a larger application.  Instead we accept some rather dirty code
 * here.  Note this code would fail if the hardware did not allow odd-byte
 * word & long accesses, but all 80x86 CPUs do.
 */

typedef void far * EMSPTR;

typedef union {			/* EMS move specification structure */
	long length;		/* It's easy to access first 4 bytes */
	char bytes[18];		/* Misaligned fields in here! */
      } EMSspec;

/* Macros for accessing misaligned fields */
#define FIELD_AT(spec,offset,type)  (*((type *) &(spec.bytes[offset])))
#define SRC_TYPE(spec)		FIELD_AT(spec,4,char)
#define SRC_HANDLE(spec)	FIELD_AT(spec,5,EMSH)
#define SRC_OFFSET(spec)	FIELD_AT(spec,7,unsigned short)
#define SRC_PAGE(spec)		FIELD_AT(spec,9,unsigned short)
#define SRC_PTR(spec)		FIELD_AT(spec,7,EMSPTR)
#define DST_TYPE(spec)		FIELD_AT(spec,11,char)
#define DST_HANDLE(spec)	FIELD_AT(spec,12,EMSH)
#define DST_OFFSET(spec)	FIELD_AT(spec,14,unsigned short)
#define DST_PAGE(spec)		FIELD_AT(spec,16,unsigned short)
#define DST_PTR(spec)		FIELD_AT(spec,14,EMSPTR)

#define EMSPAGESIZE	16384L	/* gospel, see the EMS specs */

#define HIBYTE(W)  (((W) >> 8) & 0xFF)
#define LOBYTE(W)  ((W) & 0xFF)


METHODDEF(void)
read_ems_store (j_common_ptr cinfo, backing_store_ptr info,
		void FAR * buffer_address,
		long file_offset, long byte_count)
{
  EMScontext ctx;
  EMSspec spec;

  spec.length = byte_count;
  SRC_TYPE(spec) = 1;
  SRC_HANDLE(spec) = info->handle.ems_handle;
  SRC_PAGE(spec)   = (unsigned short) (file_offset / EMSPAGESIZE);
  SRC_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
  DST_TYPE(spec) = 0;
  DST_HANDLE(spec) = 0;
  DST_PTR(spec)    = buffer_address;
  
  ctx.ds_si = (void far *) & spec;
  ctx.ax = 0x5700;		/* move memory region */
  jems_calldriver((EMScontext far *) & ctx);
  if (HIBYTE(ctx.ax) != 0)
    ERREXIT(cinfo, JERR_EMS_READ);
}


METHODDEF(void)
write_ems_store (j_common_ptr cinfo, backing_store_ptr info,
		 void FAR * buffer_address,
		 long file_offset, long byte_count)
{
  EMScontext ctx;
  EMSspec spec;

  spec.length = byte_count;
  SRC_TYPE(spec) = 0;
  SRC_HANDLE(spec) = 0;
  SRC_PTR(spec)    = buffer_address;
  DST_TYPE(spec) = 1;
  DST_HANDLE(spec) = info->handle.ems_handle;
  DST_PAGE(spec)   = (unsigned short) (file_offset / EMSPAGESIZE);
  DST_OFFSET(spec) = (unsigned short) (file_offset % EMSPAGESIZE);
  
  ctx.ds_si = (void far *) & spec;
  ctx.ax = 0x5700;		/* move memory region */
  jems_calldriver((EMScontext far *) & ctx);
  if (HIBYTE(ctx.ax) != 0)
    ERREXIT(cinfo, JERR_EMS_WRITE);
}


METHODDEF(void)
close_ems_store (j_common_ptr cinfo, backing_store_ptr info)
{
  EMScontext ctx;

  ctx.ax = 0x4500;
  ctx.dx = info->handle.ems_handle;
  jems_calldriver((EMScontext far *) & ctx);
  TRACEMS1(cinfo, 1, JTRC_EMS_CLOSE, info->handle.ems_handle);
  /* we ignore any error return from the driver */
}


LOCAL(boolean)
open_ems_store (j_common_ptr cinfo, backing_store_ptr info,
		long total_bytes_needed)
{
  EMScontext ctx;

  /* Is EMS driver there? */
  if (! jems_available())
    return FALSE;

  /* Get status, make sure EMS is OK */
  ctx.ax = 0x4000;
  jems_calldriver((EMScontext far *) & ctx);
  if (HIBYTE(ctx.ax) != 0)
    return FALSE;

  /* Get version, must be >= 4.0 */
  ctx.ax = 0x4600;
  jems_calldriver((EMScontext far *) & ctx);
  if (HIBYTE(ctx.ax) != 0 || LOBYTE(ctx.ax) < 0x40)
    return FALSE;

  /* Try to allocate requested space */
  ctx.ax = 0x4300;
  ctx.bx = (unsigned short) ((total_bytes_needed + EMSPAGESIZE-1L) / EMSPAGESIZE);
  jems_calldriver((EMScontext far *) & ctx);
  if (HIBYTE(ctx.ax) != 0)
    return FALSE;

  /* Succeeded, save the handle and away we go */
  info->handle.ems_handle = ctx.dx;
  info->read_backing_store = read_ems_store;
  info->write_backing_store = write_ems_store;
  info->close_backing_store = close_ems_store;
  TRACEMS1(cinfo, 1, JTRC_EMS_OPEN, ctx.dx);
  return TRUE;			/* succeeded */
}

#endif /* EMS_SUPPORTED */


/*
 * Initial opening of a backing-store object.
 */

GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
			 long total_bytes_needed)
{
  /* Try extended memory, then expanded memory, then regular file. */
#if XMS_SUPPORTED
  if (open_xms_store(cinfo, info, total_bytes_needed))
    return;
#endif
#if EMS_SUPPORTED
  if (open_ems_store(cinfo, info, total_bytes_needed))
    return;
#endif
  if (open_file_store(cinfo, info, total_bytes_needed))
    return;
  ERREXITS(cinfo, JERR_TFILE_CREATE, "");
}


/*
 * These routines take care of any system-dependent initialization and
 * cleanup required.
 */

GLOBAL(long)
jpeg_mem_init (j_common_ptr cinfo)
{
  next_file_num = 0;		/* initialize temp file name generator */
  return DEFAULT_MAX_MEM;	/* default for max_memory_to_use */
}

GLOBAL(void)
jpeg_mem_term (j_common_ptr cinfo)
{
  /* Microsoft C, at least in v6.00A, will not successfully reclaim freed
   * blocks of size > 32Kbytes unless we give it a kick in the rear, like so:
   */
#ifdef NEED_FHEAPMIN
  _fheapmin();
#endif
}

--- NEW FILE: jdmerge.c ---
/*
 * jdmerge.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains code for merged upsampling/color conversion.
 *
 * This file combines functions from jdsample.c and jdcolor.c;
 * read those files first to understand what's going on.
 *
 * When the chroma components are to be upsampled by simple replication
 * (ie, box filtering), we can save some work in color conversion by
 * calculating all the output pixels corresponding to a pair of chroma
 * samples at one time.  In the conversion equations
 *	R = Y           + K1 * Cr
 *	G = Y + K2 * Cb + K3 * Cr
 *	B = Y + K4 * Cb
 * only the Y term varies among the group of pixels corresponding to a pair
 * of chroma samples, so the rest of the terms can be calculated just once.
 * At typical sampling ratios, this eliminates half or three-quarters of the
 * multiplications needed for color conversion.
 *
 * This file currently provides implementations for the following cases:
 *	YCbCr => RGB color conversion only.
 *	Sampling ratios of 2h1v or 2h2v.
 *	No scaling needed at upsample time.
 *	Corner-aligned (non-CCIR601) sampling alignment.
 * Other special cases could be added, but in most applications these are
 * the only common cases.  (For uncommon cases we fall back on the more
 * general code in jdsample.c and jdcolor.c.)
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"

#ifdef UPSAMPLE_MERGING_SUPPORTED


/* Private subobject */

typedef struct {
  struct jpeg_upsampler pub;	/* public fields */

  /* Pointer to routine to do actual upsampling/conversion of one row group */
  JMETHOD(void, upmethod, (j_decompress_ptr cinfo,
			   JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
			   JSAMPARRAY output_buf));

  /* Private state for YCC->RGB conversion */
  int * Cr_r_tab;		/* => table for Cr to R conversion */
  int * Cb_b_tab;		/* => table for Cb to B conversion */
  INT32 * Cr_g_tab;		/* => table for Cr to G conversion */
  INT32 * Cb_g_tab;		/* => table for Cb to G conversion */

  /* For 2:1 vertical sampling, we produce two output rows at a time.
   * We need a "spare" row buffer to hold the second output row if the
   * application provides just a one-row buffer; we also use the spare
   * to discard the dummy last row if the image height is odd.
   */
  JSAMPROW spare_row;
  boolean spare_full;		/* T if spare buffer is occupied */

  JDIMENSION out_row_width;	/* samples per output row */
  JDIMENSION rows_to_go;	/* counts rows remaining in image */
} my_upsampler;

typedef my_upsampler * my_upsample_ptr;

#define SCALEBITS	16	/* speediest right-shift on some machines */
#define ONE_HALF	((INT32) 1 << (SCALEBITS-1))
#define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5))


/*
 * Initialize tables for YCC->RGB colorspace conversion.
 * This is taken directly from jdcolor.c; see that file for more info.
 */

LOCAL(void)
build_ycc_rgb_table (j_decompress_ptr cinfo)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  int i;
  INT32 x;
  SHIFT_TEMPS

  upsample->Cr_r_tab = (int *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(MAXJSAMPLE+1) * SIZEOF(int));
  upsample->Cb_b_tab = (int *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(MAXJSAMPLE+1) * SIZEOF(int));
  upsample->Cr_g_tab = (INT32 *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(MAXJSAMPLE+1) * SIZEOF(INT32));
  upsample->Cb_g_tab = (INT32 *)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				(MAXJSAMPLE+1) * SIZEOF(INT32));

  for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
    /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
    /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
    /* Cr=>R value is nearest int to 1.40200 * x */
    upsample->Cr_r_tab[i] = (int)
		    RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
    /* Cb=>B value is nearest int to 1.77200 * x */
    upsample->Cb_b_tab[i] = (int)
		    RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
    /* Cr=>G value is scaled-up -0.71414 * x */
    upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x;
    /* Cb=>G value is scaled-up -0.34414 * x */
    /* We also add in ONE_HALF so that need not do it in inner loop */
    upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
  }
}


/*
 * Initialize for an upsampling pass.
 */

METHODDEF(void)
start_pass_merged_upsample (j_decompress_ptr cinfo)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;

  /* Mark the spare buffer empty */
  upsample->spare_full = FALSE;
  /* Initialize total-height counter for detecting bottom of image */
  upsample->rows_to_go = cinfo->output_height;
}


/*
 * Control routine to do upsampling (and color conversion).
 *
 * The control routine just handles the row buffering considerations.
 */

METHODDEF(void)
merged_2v_upsample (j_decompress_ptr cinfo,
		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
		    JDIMENSION in_row_groups_avail,
		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
		    JDIMENSION out_rows_avail)
/* 2:1 vertical sampling case: may need a spare row. */
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  JSAMPROW work_ptrs[2];
  JDIMENSION num_rows;		/* number of rows returned to caller */

  if (upsample->spare_full) {
    /* If we have a spare row saved from a previous cycle, just return it. */
    jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0,
		      1, upsample->out_row_width);
    num_rows = 1;
    upsample->spare_full = FALSE;
  } else {
    /* Figure number of rows to return to caller. */
    num_rows = 2;
    /* Not more than the distance to the end of the image. */
    if (num_rows > upsample->rows_to_go)
      num_rows = upsample->rows_to_go;
    /* And not more than what the client can accept: */
    out_rows_avail -= *out_row_ctr;
    if (num_rows > out_rows_avail)
      num_rows = out_rows_avail;
    /* Create output pointer array for upsampler. */
    work_ptrs[0] = output_buf[*out_row_ctr];
    if (num_rows > 1) {
      work_ptrs[1] = output_buf[*out_row_ctr + 1];
    } else {
      work_ptrs[1] = upsample->spare_row;
      upsample->spare_full = TRUE;
    }
    /* Now do the upsampling. */
    (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs);
  }

  /* Adjust counts */
  *out_row_ctr += num_rows;
  upsample->rows_to_go -= num_rows;
  /* When the buffer is emptied, declare this input row group consumed */
  if (! upsample->spare_full)
    (*in_row_group_ctr)++;
}


METHODDEF(void)
merged_1v_upsample (j_decompress_ptr cinfo,
		    JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
		    JDIMENSION in_row_groups_avail,
		    JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
		    JDIMENSION out_rows_avail)
/* 1:1 vertical sampling case: much easier, never need a spare row. */
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;

  /* Just do the upsampling. */
  (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
			 output_buf + *out_row_ctr);
  /* Adjust counts */
  (*out_row_ctr)++;
  (*in_row_group_ctr)++;
}


/*
 * These are the routines invoked by the control routines to do
 * the actual upsampling/conversion.  One row group is processed per call.
 *
 * Note: since we may be writing directly into application-supplied buffers,
 * we have to be honest about the output width; we can't assume the buffer
 * has been rounded up to an even width.
 */


/*
 * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical.
 */

METHODDEF(void)
h2v1_merged_upsample (j_decompress_ptr cinfo,
		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
		      JSAMPARRAY output_buf)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  register int y, cred, cgreen, cblue;
  int cb, cr;
  register JSAMPROW outptr;
  JSAMPROW inptr0, inptr1, inptr2;
  JDIMENSION col;
  /* copy these pointers into registers if possible */
  register JSAMPLE * range_limit = cinfo->sample_range_limit;
  int * Crrtab = upsample->Cr_r_tab;
  int * Cbbtab = upsample->Cb_b_tab;
  INT32 * Crgtab = upsample->Cr_g_tab;
  INT32 * Cbgtab = upsample->Cb_g_tab;
  SHIFT_TEMPS

  inptr0 = input_buf[0][in_row_group_ctr];
  inptr1 = input_buf[1][in_row_group_ctr];
  inptr2 = input_buf[2][in_row_group_ctr];
  outptr = output_buf[0];
  /* Loop for each pair of output pixels */
  for (col = cinfo->output_width >> 1; col > 0; col--) {
    /* Do the chroma part of the calculation */
    cb = GETJSAMPLE(*inptr1++);
    cr = GETJSAMPLE(*inptr2++);
    cred = Crrtab[cr];
    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
    cblue = Cbbtab[cb];
    /* Fetch 2 Y values and emit 2 pixels */
    y  = GETJSAMPLE(*inptr0++);
    outptr[RGB_RED] =   range_limit[y + cred];
    outptr[RGB_GREEN] = range_limit[y + cgreen];
    outptr[RGB_BLUE] =  range_limit[y + cblue];
    outptr += RGB_PIXELSIZE;
    y  = GETJSAMPLE(*inptr0++);
    outptr[RGB_RED] =   range_limit[y + cred];
    outptr[RGB_GREEN] = range_limit[y + cgreen];
    outptr[RGB_BLUE] =  range_limit[y + cblue];
    outptr += RGB_PIXELSIZE;
  }
  /* If image width is odd, do the last output column separately */
  if (cinfo->output_width & 1) {
    cb = GETJSAMPLE(*inptr1);
    cr = GETJSAMPLE(*inptr2);
    cred = Crrtab[cr];
    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
    cblue = Cbbtab[cb];
    y  = GETJSAMPLE(*inptr0);
    outptr[RGB_RED] =   range_limit[y + cred];
    outptr[RGB_GREEN] = range_limit[y + cgreen];
    outptr[RGB_BLUE] =  range_limit[y + cblue];
  }
}


/*
 * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical.
 */

METHODDEF(void)
h2v2_merged_upsample (j_decompress_ptr cinfo,
		      JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr,
		      JSAMPARRAY output_buf)
{
  my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
  register int y, cred, cgreen, cblue;
  int cb, cr;
  register JSAMPROW outptr0, outptr1;
  JSAMPROW inptr00, inptr01, inptr1, inptr2;
  JDIMENSION col;
  /* copy these pointers into registers if possible */
  register JSAMPLE * range_limit = cinfo->sample_range_limit;
  int * Crrtab = upsample->Cr_r_tab;
  int * Cbbtab = upsample->Cb_b_tab;
  INT32 * Crgtab = upsample->Cr_g_tab;
  INT32 * Cbgtab = upsample->Cb_g_tab;
  SHIFT_TEMPS

  inptr00 = input_buf[0][in_row_group_ctr*2];
  inptr01 = input_buf[0][in_row_group_ctr*2 + 1];
  inptr1 = input_buf[1][in_row_group_ctr];
  inptr2 = input_buf[2][in_row_group_ctr];
  outptr0 = output_buf[0];
  outptr1 = output_buf[1];
  /* Loop for each group of output pixels */
  for (col = cinfo->output_width >> 1; col > 0; col--) {
    /* Do the chroma part of the calculation */
    cb = GETJSAMPLE(*inptr1++);
    cr = GETJSAMPLE(*inptr2++);
    cred = Crrtab[cr];
    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
    cblue = Cbbtab[cb];
    /* Fetch 4 Y values and emit 4 pixels */
    y  = GETJSAMPLE(*inptr00++);
    outptr0[RGB_RED] =   range_limit[y + cred];
    outptr0[RGB_GREEN] = range_limit[y + cgreen];
    outptr0[RGB_BLUE] =  range_limit[y + cblue];
    outptr0 += RGB_PIXELSIZE;
    y  = GETJSAMPLE(*inptr00++);
    outptr0[RGB_RED] =   range_limit[y + cred];
    outptr0[RGB_GREEN] = range_limit[y + cgreen];
    outptr0[RGB_BLUE] =  range_limit[y + cblue];
    outptr0 += RGB_PIXELSIZE;
    y  = GETJSAMPLE(*inptr01++);
    outptr1[RGB_RED] =   range_limit[y + cred];
    outptr1[RGB_GREEN] = range_limit[y + cgreen];
    outptr1[RGB_BLUE] =  range_limit[y + cblue];
    outptr1 += RGB_PIXELSIZE;
    y  = GETJSAMPLE(*inptr01++);
    outptr1[RGB_RED] =   range_limit[y + cred];
    outptr1[RGB_GREEN] = range_limit[y + cgreen];
    outptr1[RGB_BLUE] =  range_limit[y + cblue];
    outptr1 += RGB_PIXELSIZE;
  }
  /* If image width is odd, do the last output column separately */
  if (cinfo->output_width & 1) {
    cb = GETJSAMPLE(*inptr1);
    cr = GETJSAMPLE(*inptr2);
    cred = Crrtab[cr];
    cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS);
    cblue = Cbbtab[cb];
    y  = GETJSAMPLE(*inptr00);
    outptr0[RGB_RED] =   range_limit[y + cred];
    outptr0[RGB_GREEN] = range_limit[y + cgreen];
    outptr0[RGB_BLUE] =  range_limit[y + cblue];
    y  = GETJSAMPLE(*inptr01);
    outptr1[RGB_RED] =   range_limit[y + cred];
    outptr1[RGB_GREEN] = range_limit[y + cgreen];
    outptr1[RGB_BLUE] =  range_limit[y + cblue];
  }
}


/*
 * Module initialization routine for merged upsampling/color conversion.
 *
 * NB: this is called under the conditions determined by use_merged_upsample()
 * in jdmaster.c.  That routine MUST correspond to the actual capabilities
 * of this module; no safety checks are made here.
 */

GLOBAL(void)
jinit_merged_upsampler (j_decompress_ptr cinfo)
{
  my_upsample_ptr upsample;

  upsample = (my_upsample_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_upsampler));
  cinfo->upsample = (struct jpeg_upsampler *) upsample;
  upsample->pub.start_pass = start_pass_merged_upsample;
  upsample->pub.need_context_rows = FALSE;

  upsample->out_row_width = cinfo->output_width * cinfo->out_color_components;

  if (cinfo->max_v_samp_factor == 2) {
    upsample->pub.upsample = merged_2v_upsample;
    upsample->upmethod = h2v2_merged_upsample;
    /* Allocate a spare row buffer */
    upsample->spare_row = (JSAMPROW)
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
		(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE)));
  } else {
    upsample->pub.upsample = merged_1v_upsample;
    upsample->upmethod = h2v1_merged_upsample;
    /* No spare row needed */
    upsample->spare_row = NULL;
  }

  build_ycc_rgb_table(cinfo);
}

#endif /* UPSAMPLE_MERGING_SUPPORTED */

--- NEW FILE: wizard.doc ---
Advanced usage instructions for the Independent JPEG Group's JPEG software
==========================================================================

This file describes cjpeg's "switches for wizards".

The "wizard" switches are intended for experimentation with JPEG by persons
who are reasonably knowledgeable about the JPEG standard.  If you don't know
what you are doing, DON'T USE THESE SWITCHES.  You'll likely produce files
with worse image quality and/or poorer compression than you'd get from the
default settings.  Furthermore, these switches must be used with caution
when making files intended for general use, because not all JPEG decoders
will support unusual JPEG parameter settings.


Quantization Table Adjustment
-----------------------------

Ordinarily, cjpeg starts with a default set of tables (the same ones given
as examples in the JPEG standard) and scales them up or down according to
the -quality setting.  The details of the scaling algorithm can be found in
jcparam.c.  At very low quality settings, some quantization table entries
can get scaled up to values exceeding 255.  Although 2-byte quantization
values are supported by the IJG software, this feature is not in baseline
JPEG and is not supported by all implementations.  If you need to ensure
wide compatibility of low-quality files, you can constrain the scaled
quantization values to no more than 255 by giving the -baseline switch.
Note that use of -baseline will result in poorer quality for the same file
size, since more bits than necessary are expended on higher AC coefficients.

You can substitute a different set of quantization values by using the
-qtables switch:

	-qtables file	Use the quantization tables given in the named file.

The specified file should be a text file containing decimal quantization
values.  The file should contain one to four tables, each of 64 elements.
The tables are implicitly numbered 0,1,etc. in order of appearance.  Table
entries appear in normal array order (NOT in the zigzag order in which they
will be stored in the JPEG file).

Quantization table files are free format, in that arbitrary whitespace can
appear between numbers.  Also, comments can be included: a comment starts
with '#' and extends to the end of the line.  Here is an example file that
duplicates the default quantization tables:

	# Quantization tables given in JPEG spec, section K.1

	# This is table 0 (the luminance table):
	  16  11  10  16  24  40  51  61
	  12  12  14  19  26  58  60  55
	  14  13  16  24  40  57  69  56
	  14  17  22  29  51  87  80  62
	  18  22  37  56  68 109 103  77
	  24  35  55  64  81 104 113  92
	  49  64  78  87 103 121 120 101
	  72  92  95  98 112 100 103  99

	# This is table 1 (the chrominance table):
	  17  18  24  47  99  99  99  99
	  18  21  26  66  99  99  99  99
	  24  26  56  99  99  99  99  99
	  47  66  99  99  99  99  99  99
	  99  99  99  99  99  99  99  99
	  99  99  99  99  99  99  99  99
	  99  99  99  99  99  99  99  99
	  99  99  99  99  99  99  99  99

If the -qtables switch is used without -quality, then the specified tables
are used exactly as-is.  If both -qtables and -quality are used, then the
tables taken from the file are scaled in the same fashion that the default
tables would be scaled for that quality setting.  If -baseline appears, then
the quantization values are constrained to the range 1-255.

By default, cjpeg will use quantization table 0 for luminance components and
table 1 for chrominance components.  To override this choice, use the -qslots
switch:

	-qslots N[,...]		Select which quantization table to use for
				each color component.

The -qslots switch specifies a quantization table number for each color
component, in the order in which the components appear in the JPEG SOF marker.
For example, to create a separate table for each of Y,Cb,Cr, you could
provide a -qtables file that defines three quantization tables and say
"-qslots 0,1,2".  If -qslots gives fewer table numbers than there are color
components, then the last table number is repeated as necessary.


Sampling Factor Adjustment
--------------------------

By default, cjpeg uses 2:1 horizontal and vertical downsampling when
compressing YCbCr data, and no downsampling for all other color spaces.
You can override this default with the -sample switch:

	-sample HxV[,...]	Set JPEG sampling factors for each color
				component.

The -sample switch specifies the JPEG sampling factors for each color
component, in the order in which they appear in the JPEG SOF marker.
If you specify fewer HxV pairs than there are components, the remaining
components are set to 1x1 sampling.  For example, the default YCbCr setting
is equivalent to "-sample 2x2,1x1,1x1", which can be abbreviated to
"-sample 2x2".

There are still some JPEG decoders in existence that support only 2x1
sampling (also called 4:2:2 sampling).  Compatibility with such decoders can
be achieved by specifying "-sample 2x1".  This is not recommended unless
really necessary, since it increases file size and encoding/decoding time
with very little quality gain.


Multiple Scan / Progression Control
-----------------------------------

By default, cjpeg emits a single-scan sequential JPEG file.  The
-progressive switch generates a progressive JPEG file using a default series
of progression parameters.  You can create multiple-scan sequential JPEG
files or progressive JPEG files with custom progression parameters by using
the -scans switch:

	-scans file	Use the scan sequence given in the named file.

The specified file should be a text file containing a "scan script".
The script specifies the contents and ordering of the scans to be emitted.
Each entry in the script defines one scan.  A scan definition specifies
the components to be included in the scan, and for progressive JPEG it also
specifies the progression parameters Ss,Se,Ah,Al for the scan.  Scan
definitions are separated by semicolons (';').  A semicolon after the last
scan definition is optional.

Each scan definition contains one to four component indexes, optionally
followed by a colon (':') and the four progressive-JPEG parameters.  The
component indexes denote which color component(s) are to be transmitted in
the scan.  Components are numbered in the order in which they appear in the
JPEG SOF marker, with the first component being numbered 0.  (Note that these
indexes are not the "component ID" codes assigned to the components, just
positional indexes.)

The progression parameters for each scan are:
	Ss	Zigzag index of first coefficient included in scan
	Se	Zigzag index of last coefficient included in scan
	Ah	Zero for first scan of a coefficient, else Al of prior scan
	Al	Successive approximation low bit position for scan
If the progression parameters are omitted, the values 0,63,0,0 are used,
producing a sequential JPEG file.  cjpeg automatically determines whether
the script represents a progressive or sequential file, by observing whether
Ss and Se values other than 0 and 63 appear.  (The -progressive switch is
not needed to specify this; in fact, it is ignored when -scans appears.)
The scan script must meet the JPEG restrictions on progression sequences.
(cjpeg checks that the spec's requirements are obeyed.)

Scan script files are free format, in that arbitrary whitespace can appear
between numbers and around punctuation.  Also, comments can be included: a
comment starts with '#' and extends to the end of the line.  For additional
legibility, commas or dashes can be placed between values.  (Actually, any
single punctuation character other than ':' or ';' can be inserted.)  For
example, the following two scan definitions are equivalent:
	0 1 2: 0 63 0 0;
	0,1,2 : 0-63, 0,0 ;

Here is an example of a scan script that generates a partially interleaved
sequential JPEG file:

	0;			# Y only in first scan
	1 2;			# Cb and Cr in second scan

Here is an example of a progressive scan script using only spectral selection
(no successive approximation):

	# Interleaved DC scan for Y,Cb,Cr:
	0,1,2: 0-0,   0, 0 ;
	# AC scans:
	0:     1-2,   0, 0 ;	# First two Y AC coefficients
	0:     3-5,   0, 0 ;	# Three more
	1:     1-63,  0, 0 ;	# All AC coefficients for Cb
	2:     1-63,  0, 0 ;	# All AC coefficients for Cr
	0:     6-9,   0, 0 ;	# More Y coefficients
	0:     10-63, 0, 0 ;	# Remaining Y coefficients

Here is an example of a successive-approximation script.  This is equivalent
to the default script used by "cjpeg -progressive" for YCbCr images:

	# Initial DC scan for Y,Cb,Cr (lowest bit not sent)
	0,1,2: 0-0,   0, 1 ;
	# First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits:
	0:     1-5,   0, 2 ;
	# Send all Cr,Cb AC coefficients, minus lowest bit:
	# (chroma data is usually too small to be worth subdividing further;
	#  but note we send Cr first since eye is least sensitive to Cb)
	2:     1-63,  0, 1 ;
	1:     1-63,  0, 1 ;
	# Send remaining Y AC coefficients, minus 2 lowest bits:
	0:     6-63,  0, 2 ;
	# Send next-to-lowest bit of all Y AC coefficients:
	0:     1-63,  2, 1 ;
	# At this point we've sent all but the lowest bit of all coefficients.
	# Send lowest bit of DC coefficients
	0,1,2: 0-0,   1, 0 ;
	# Send lowest bit of AC coefficients
	2:     1-63,  1, 0 ;
	1:     1-63,  1, 0 ;
	# Y AC lowest bit scan is last; it's usually the largest scan
	0:     1-63,  1, 0 ;

It may be worth pointing out that this script is tuned for quality settings
of around 50 to 75.  For lower quality settings, you'd probably want to use
a script with fewer stages of successive approximation (otherwise the
initial scans will be really bad).  For higher quality settings, you might
want to use more stages of successive approximation (so that the initial
scans are not too large).

--- NEW FILE: jconfig.cfg ---
/* jconfig.cfg --- source file edited by configure script */
/* see jconfig.doc for explanations */

#undef HAVE_PROTOTYPES
#undef HAVE_UNSIGNED_CHAR
#undef HAVE_UNSIGNED_SHORT
#undef void
#undef const
#undef CHAR_IS_UNSIGNED
#undef HAVE_STDDEF_H
#undef HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS
#undef NEED_SHORT_EXTERNAL_NAMES
/* Define this if you get warnings about undefined structures. */
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED
#undef INLINE
/* These are for configuring the JPEG memory manager. */
#undef DEFAULT_MAX_MEM
#undef NO_MKTEMP

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#undef TWO_FILE_COMMANDLINE
#undef NEED_SIGNAL_CATCHER
#undef DONT_USE_B_MODE

/* Define this if you want percent-done progress reports from cjpeg/djpeg. */
#undef PROGRESS_REPORT

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: jdtrans.c ---
/*
 * jdtrans.c
 *
 * Copyright (C) 1995-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains library routines for transcoding decompression,
 * that is, reading raw DCT coefficient arrays from an input JPEG file.
 * The routines in jdapimin.c will also be needed by a transcoder.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Forward declarations */
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo));


/*
 * Read the coefficient arrays from a JPEG file.
 * jpeg_read_header must be completed before calling this.
 *
 * The entire image is read into a set of virtual coefficient-block arrays,
 * one per component.  The return value is a pointer to the array of
 * virtual-array descriptors.  These can be manipulated directly via the
 * JPEG memory manager, or handed off to jpeg_write_coefficients().
 * To release the memory occupied by the virtual arrays, call
 * jpeg_finish_decompress() when done with the data.
 *
 * An alternative usage is to simply obtain access to the coefficient arrays
 * during a buffered-image-mode decompression operation.  This is allowed
 * after any jpeg_finish_output() call.  The arrays can be accessed until
 * jpeg_finish_decompress() is called.  (Note that any call to the library
 * may reposition the arrays, so don't rely on access_virt_barray() results
 * to stay valid across library calls.)
 *
 * Returns NULL if suspended.  This case need be checked only if
 * a suspending data source is used.
 */

GLOBAL(jvirt_barray_ptr *)
jpeg_read_coefficients (j_decompress_ptr cinfo)
{
  if (cinfo->global_state == DSTATE_READY) {
    /* First call: initialize active modules */
    transdecode_master_selection(cinfo);
    cinfo->global_state = DSTATE_RDCOEFS;
  }
  if (cinfo->global_state == DSTATE_RDCOEFS) {
    /* Absorb whole file into the coef buffer */
    for (;;) {
      int retcode;
      /* Call progress monitor hook if present */
      if (cinfo->progress != NULL)
	(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
      /* Absorb some more input */
      retcode = (*cinfo->inputctl->consume_input) (cinfo);
      if (retcode == JPEG_SUSPENDED)
	return NULL;
      if (retcode == JPEG_REACHED_EOI)
	break;
      /* Advance progress counter if appropriate */
      if (cinfo->progress != NULL &&
	  (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
	if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
	  /* startup underestimated number of scans; ratchet up one scan */
	  cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
	}
      }
    }
    /* Set state so that jpeg_finish_decompress does the right thing */
    cinfo->global_state = DSTATE_STOPPING;
  }
  /* At this point we should be in state DSTATE_STOPPING if being used
   * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access
   * to the coefficients during a full buffered-image-mode decompression.
   */
  if ((cinfo->global_state == DSTATE_STOPPING ||
       cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) {
    return cinfo->coef->coef_arrays;
  }
  /* Oops, improper usage */
  ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
  return NULL;			/* keep compiler happy */
}


/*
 * Master selection of decompression modules for transcoding.
 * This substitutes for jdmaster.c's initialization of the full decompressor.
 */

LOCAL(void)
transdecode_master_selection (j_decompress_ptr cinfo)
{
  /* This is effectively a buffered-image operation. */
  cinfo->buffered_image = TRUE;

  /* Entropy decoding: either Huffman or arithmetic coding. */
  if (cinfo->arith_code) {
    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
  } else {
    if (cinfo->progressive_mode) {
#ifdef D_PROGRESSIVE_SUPPORTED
      jinit_phuff_decoder(cinfo);
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    } else
      jinit_huff_decoder(cinfo);
  }

  /* Always get a full-image coefficient buffer. */
  jinit_d_coef_controller(cinfo, TRUE);

  /* We can now tell the memory manager to allocate virtual arrays. */
  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);

  /* Initialize input side of decompressor to consume first scan. */
  (*cinfo->inputctl->start_input_pass) (cinfo);

  /* Initialize progress monitoring. */
  if (cinfo->progress != NULL) {
    int nscans;
    /* Estimate number of scans to set pass_limit. */
    if (cinfo->progressive_mode) {
      /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
      nscans = 2 + 3 * cinfo->num_components;
    } else if (cinfo->inputctl->has_multiple_scans) {
      /* For a nonprogressive multiscan file, estimate 1 scan per component. */
      nscans = cinfo->num_components;
    } else {
      nscans = 1;
    }
    cinfo->progress->pass_counter = 0L;
    cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
    cinfo->progress->completed_passes = 0;
    cinfo->progress->total_passes = 1;
  }
}

--- NEW FILE: makefile.bcc ---
# Makefile for Independent JPEG Group's software

# This makefile is suitable for Borland C on MS-DOS or OS/2.
# It works with Borland C++ for DOS, revision 3.0 or later,
# and has been tested with Borland C++ for OS/2.
# Watch out for optimization bugs in the OS/2 compilers --- see notes below!
# Thanks to Tom Wright and Ge' Weijers (original DOS) and
# Ken Porter (OS/2) for this file.

# Read installation instructions before saying "make" !!

# Are we under DOS or OS/2?
!if !$d(DOS) && !$d(OS2)
!if $d(__OS2__)
OS2=1
!else
DOS=1
!endif
!endif

# The name of your C compiler:
CC= bcc

# You may need to adjust these cc options:
!if $d(DOS)
CFLAGS= -O2 -mm -w-par -w-stu -w-ccc -w-rch
!else
CFLAGS= -O1 -w-par -w-stu -w-ccc -w-rch
!endif
# -O2 enables full code optimization (for pre-3.0 Borland C++, use -O -G -Z).
# -O2 is buggy in Borland OS/2 C++ revision 2.0, so use -O1 there for now.
# If you have Borland OS/2 C++ revision 1.0, use -O or no optimization at all.
# -mm selects medium memory model (near data, far code pointers; DOS only!)
# -w-par suppresses warnings about unused function parameters
# -w-stu suppresses warnings about incomplete structures
# -w-ccc suppresses warnings about compile-time-constant conditions
# -w-rch suppresses warnings about unreachable code
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.

# Link-time cc options:
!if $d(DOS)
LDFLAGS= -mm
# memory model option here must match CFLAGS!
!else
LDFLAGS=
# -lai full-screen app
# -lc case-significant link
!endif

# Put here the object file name for the correct system-dependent memory
# manager file.
# For DOS, we recommend jmemdos.c and jmemdosa.asm.
# For OS/2, we recommend jmemnobs.c (flat memory!)
# SYSDEPMEMLIB must list the same files with "+" signs for the librarian.
!if $d(DOS)
SYSDEPMEM= jmemdos.obj jmemdosa.obj
SYSDEPMEMLIB= +jmemdos.obj +jmemdosa.obj
!else
SYSDEPMEM= jmemnobs.obj
SYSDEPMEMLIB= +jmemnobs.obj
!endif

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.obj jutils.obj jerror.obj jmemmgr.obj $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.obj jcapistd.obj jctrans.obj jcparam.obj jdatadst.obj \
        jcinit.obj jcmaster.obj jcmarker.obj jcmainct.obj jcprepct.obj \
        jccoefct.obj jccolor.obj jcsample.obj jchuff.obj jcphuff.obj \
        jcdctmgr.obj jfdctfst.obj jfdctflt.obj jfdctint.obj
# decompression library object files
DLIBOBJECTS= jdapimin.obj jdapistd.obj jdtrans.obj jdatasrc.obj \
        jdmaster.obj jdinput.obj jdmarker.obj jdhuff.obj jdphuff.obj \
        jdmainct.obj jdcoefct.obj jdpostct.obj jddctmgr.obj jidctfst.obj \
        jidctflt.obj jidctint.obj jidctred.obj jdsample.obj jdcolor.obj \
        jquant1.obj jquant2.obj jdmerge.obj
# These objectfiles are included in libjpeg.lib
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.obj rdppm.obj rdgif.obj rdtarga.obj rdrle.obj rdbmp.obj \
        rdswitch.obj cdjpeg.obj
DOBJECTS= djpeg.obj wrppm.obj wrgif.obj wrtarga.obj wrrle.obj wrbmp.obj \
        rdcolmap.obj cdjpeg.obj
TROBJECTS= jpegtran.obj rdswitch.obj cdjpeg.obj transupp.obj


all: libjpeg.lib cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe

libjpeg.lib: $(LIBOBJECTS)
	- del libjpeg.lib
	tlib libjpeg.lib /E /C @&&|
+jcapimin.obj +jcapistd.obj +jctrans.obj +jcparam.obj +jdatadst.obj &
+jcinit.obj +jcmaster.obj +jcmarker.obj +jcmainct.obj +jcprepct.obj &
+jccoefct.obj +jccolor.obj +jcsample.obj +jchuff.obj +jcphuff.obj &
+jcdctmgr.obj +jfdctfst.obj +jfdctflt.obj +jfdctint.obj +jdapimin.obj &
+jdapistd.obj +jdtrans.obj +jdatasrc.obj +jdmaster.obj +jdinput.obj &
+jdmarker.obj +jdhuff.obj +jdphuff.obj +jdmainct.obj +jdcoefct.obj &
+jdpostct.obj +jddctmgr.obj +jidctfst.obj +jidctflt.obj +jidctint.obj &
+jidctred.obj +jdsample.obj +jdcolor.obj +jquant1.obj +jquant2.obj &
+jdmerge.obj +jcomapi.obj +jutils.obj +jerror.obj +jmemmgr.obj &
$(SYSDEPMEMLIB)
|

cjpeg.exe: $(COBJECTS) libjpeg.lib
	$(CC) $(LDFLAGS) -ecjpeg.exe $(COBJECTS) libjpeg.lib

djpeg.exe: $(DOBJECTS) libjpeg.lib
	$(CC) $(LDFLAGS) -edjpeg.exe $(DOBJECTS) libjpeg.lib

jpegtran.exe: $(TROBJECTS) libjpeg.lib
	$(CC) $(LDFLAGS) -ejpegtran.exe $(TROBJECTS) libjpeg.lib

rdjpgcom.exe: rdjpgcom.c
!if $d(DOS)
	$(CC) -ms -O rdjpgcom.c
!else
	$(CC) $(CFLAGS) rdjpgcom.c
!endif

# On DOS, wrjpgcom needs large model so it can malloc a 64K chunk
wrjpgcom.exe: wrjpgcom.c
!if $d(DOS)
	$(CC) -ml -O wrjpgcom.c
!else
	$(CC) $(CFLAGS) wrjpgcom.c
!endif

# This "{}" syntax allows Borland Make to "batch" source files.
# In this way, each run of the compiler can build many modules.
.c.obj:
	$(CC) $(CFLAGS) -c{ $<}

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

clean:
	- del *.obj
	- del libjpeg.lib
	- del cjpeg.exe
	- del djpeg.exe
	- del jpegtran.exe
	- del rdjpgcom.exe
	- del wrjpgcom.exe
	- del testout*.*

test: cjpeg.exe djpeg.exe jpegtran.exe
	- del testout*.*
	djpeg -dct int -ppm -outfile testout.ppm  testorig.jpg
	djpeg -dct int -bmp -colors 256 -outfile testout.bmp  testorig.jpg
	cjpeg -dct int -outfile testout.jpg  testimg.ppm
	djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
	cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
	jpegtran -outfile testoutt.jpg testprog.jpg
!if $d(DOS)
	fc /b testimg.ppm testout.ppm
	fc /b testimg.bmp testout.bmp
	fc /b testimg.jpg testout.jpg
	fc /b testimg.ppm testoutp.ppm
	fc /b testimgp.jpg testoutp.jpg
	fc /b testorig.jpg testoutt.jpg
!else
	echo n > n.tmp
	comp testimg.ppm testout.ppm < n.tmp
	comp testimg.bmp testout.bmp < n.tmp
	comp testimg.jpg testout.jpg < n.tmp
	comp testimg.ppm testoutp.ppm < n.tmp
	comp testimgp.jpg testoutp.jpg < n.tmp
	comp testorig.jpg testoutt.jpg < n.tmp
	del n.tmp
!endif


jcapimin.obj: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.obj: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.obj: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.obj: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.obj: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.obj: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.obj: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.obj: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.obj: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.obj: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.obj: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.obj: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.obj: jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.obj: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.obj: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.obj: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.obj: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.obj: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.obj: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.obj: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.obj: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.obj: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.obj: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.obj: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.obj: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.obj: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.obj: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.obj: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.obj: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.obj: jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.obj: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.obj: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.obj: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.obj: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.obj: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.obj: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.obj: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.obj: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.obj: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.obj: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.obj: jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.obj: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.obj: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.obj: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.obj: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.obj: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.obj: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.obj: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.obj: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.obj: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.obj: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.obj: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.obj: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.obj: rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.obj: wrjpgcom.c jinclude.h jconfig.h
cdjpeg.obj: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.obj: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.obj: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.obj: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.obj: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.obj: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.obj: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.obj: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.obj: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.obj: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.obj: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.obj: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.obj: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.obj: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
jmemdosa.obj: jmemdosa.asm
	tasm /mx jmemdosa.asm

--- NEW FILE: jfdctfst.c ---
/*
 * jfdctfst.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a fast, not so accurate integer implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with fixed-point math,
 * accuracy is lost due to imprecise representation of the scaled
 * quantization values.  The smaller the quantization table entry, the less
 * precise the scaled value, so this implementation does worse with high-
 * quality-setting files than with low-quality ones.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_IFAST_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/* Scaling decisions are generally the same as in the LL&M algorithm;
 * see jfdctint.c for more details.  However, we choose to descale
 * (right shift) multiplication products as soon as they are formed,
 * rather than carrying additional fractional bits into subsequent additions.
 * This compromises accuracy slightly, but it lets us save a few shifts.
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
 * everywhere except in the multiplications proper; this saves a good deal
 * of work on 16-bit-int machines.
 *
 * Again to save a few shifts, the intermediate results between pass 1 and
 * pass 2 are not upscaled, but are represented only to integral precision.
 *
 * A final compromise is to represent the multiplicative constants to only
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
 * machines, and may also reduce the cost of multiplication (since there
 * are fewer one-bits in the constants).
 */

#define CONST_BITS  8


/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 8
#define FIX_0_382683433  ((INT32)   98)		/* FIX(0.382683433) */
#define FIX_0_541196100  ((INT32)  139)		/* FIX(0.541196100) */
#define FIX_0_707106781  ((INT32)  181)		/* FIX(0.707106781) */
#define FIX_1_306562965  ((INT32)  334)		/* FIX(1.306562965) */
#else
#define FIX_0_382683433  FIX(0.382683433)
#define FIX_0_541196100  FIX(0.541196100)
#define FIX_0_707106781  FIX(0.707106781)
#define FIX_1_306562965  FIX(1.306562965)
#endif


/* We can gain a little more speed, with a further compromise in accuracy,
 * by omitting the addition in a descaling shift.  This yields an incorrectly
 * rounded result half the time...
 */

#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
#endif


/* Multiply a DCTELEM variable by an INT32 constant, and immediately
 * descale to yield a DCTELEM result.
 */

#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))


/*
 * Perform the forward DCT on one block of samples.
 */

GLOBAL(void)
jpeg_fdct_ifast (DCTELEM * data)
{
  DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  DCTELEM tmp10, tmp11, tmp12, tmp13;
  DCTELEM z1, z2, z3, z4, z5, z11, z13;
  DCTELEM *dataptr;
  int ctr;
  SHIFT_TEMPS

  /* Pass 1: process rows. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[0] + dataptr[7];
    tmp7 = dataptr[0] - dataptr[7];
    tmp1 = dataptr[1] + dataptr[6];
    tmp6 = dataptr[1] - dataptr[6];
    tmp2 = dataptr[2] + dataptr[5];
    tmp5 = dataptr[2] - dataptr[5];
    tmp3 = dataptr[3] + dataptr[4];
    tmp4 = dataptr[3] - dataptr[4];
    
    /* Even part */
    
    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
    dataptr[4] = tmp10 - tmp11;
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    dataptr[2] = tmp13 + z1;	/* phase 5 */
    dataptr[6] = tmp13 - z1;
    
    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[5] = z13 + z2;	/* phase 6 */
    dataptr[3] = z13 - z2;
    dataptr[1] = z11 + z4;
    dataptr[7] = z11 - z4;

    dataptr += DCTSIZE;		/* advance pointer to next row */
  }

  /* Pass 2: process columns. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    
    /* Even part */
    
    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
    
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    dataptr[DCTSIZE*6] = tmp13 - z1;
    
    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    dataptr[DCTSIZE*3] = z13 - z2;
    dataptr[DCTSIZE*1] = z11 + z4;
    dataptr[DCTSIZE*7] = z11 - z4;

    dataptr++;			/* advance pointer to next column */
  }
}

#endif /* DCT_IFAST_SUPPORTED */

--- NEW FILE: jccoefct.c ---
/*
 * jccoefct.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the coefficient buffer controller for compression.
 * This controller is the top level of the JPEG compressor proper.
 * The coefficient buffer lies between forward-DCT and entropy encoding steps.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* We use a full-image coefficient buffer when doing Huffman optimization,
 * and also for writing multiple-scan JPEG files.  In all cases, the DCT
 * step is run during the first pass, and subsequent passes need only read
 * the buffered coefficients.
 */
#ifdef ENTROPY_OPT_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#else
#ifdef C_MULTISCAN_FILES_SUPPORTED
#define FULL_COEF_BUFFER_SUPPORTED
#endif
#endif


/* Private buffer controller object */

typedef struct {
  struct jpeg_c_coef_controller pub; /* public fields */

  JDIMENSION iMCU_row_num;	/* iMCU row # within image */
  JDIMENSION mcu_ctr;		/* counts MCUs processed in current row */
  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
  int MCU_rows_per_iMCU_row;	/* number of such rows needed */

  /* For single-pass compression, it's sufficient to buffer just one MCU
   * (although this may prove a bit slow in practice).  We allocate a
   * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each
   * MCU constructed and sent.  (On 80x86, the workspace is FAR even though
   * it's not really very big; this is to keep the module interfaces unchanged
   * when a large coefficient buffer is necessary.)
   * In multi-pass modes, this array points to the current MCU's blocks
   * within the virtual arrays.
   */
  JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU];

  /* In multi-pass modes, we need a virtual block array for each component. */
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
} my_coef_controller;

typedef my_coef_controller * my_coef_ptr;


/* Forward declarations */
METHODDEF(boolean) compress_data
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#ifdef FULL_COEF_BUFFER_SUPPORTED
METHODDEF(boolean) compress_first_pass
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
METHODDEF(boolean) compress_output
    JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf));
#endif


LOCAL(void)
start_iMCU_row (j_compress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row */
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* In an interleaved scan, an MCU row is the same as an iMCU row.
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
   * But at the bottom of the image, process only what's left.
   */
  if (cinfo->comps_in_scan > 1) {
    coef->MCU_rows_per_iMCU_row = 1;
  } else {
    if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1))
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    else
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  }

  coef->mcu_ctr = 0;
  coef->MCU_vert_offset = 0;
}


/*
 * Initialize for a processing pass.
 */

METHODDEF(void)
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  coef->iMCU_row_num = 0;
  start_iMCU_row(cinfo);

  switch (pass_mode) {
  case JBUF_PASS_THRU:
    if (coef->whole_image[0] != NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_data;
    break;
#ifdef FULL_COEF_BUFFER_SUPPORTED
  case JBUF_SAVE_AND_PASS:
    if (coef->whole_image[0] == NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_first_pass;
    break;
  case JBUF_CRANK_DEST:
    if (coef->whole_image[0] == NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    coef->pub.compress_data = compress_output;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    break;
  }
}


/*
 * Process some data in the single-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the image.
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
 *
 * NB: input_buf contains a plane for each component in image,
 * which we index according to the component's SOF position.
 */

METHODDEF(boolean)
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  int blkn, bi, ci, yindex, yoffset, blockcnt;
  JDIMENSION ypos, xpos;
  jpeg_component_info *compptr;

  /* Loop to write as much as one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col;
	 MCU_col_num++) {
      /* Determine where data comes from in input_buf and do the DCT thing.
       * Each call on forward_DCT processes a horizontal row of DCT blocks
       * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks
       * sequentially.  Dummy blocks at the right or bottom edge are filled in
       * specially.  The data in them does not matter for image reconstruction,
       * so we fill them with values that will encode to the smallest amount of
       * data, viz: all zeroes in the AC entries, DC entries equal to previous
       * block's DC value.  (Thanks to Thomas Kinsman for this idea.)
       */
      blkn = 0;
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
	compptr = cinfo->cur_comp_info[ci];
	blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
						: compptr->last_col_width;
	xpos = MCU_col_num * compptr->MCU_sample_width;
	ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
	  if (coef->iMCU_row_num < last_iMCU_row ||
	      yoffset+yindex < compptr->last_row_height) {
	    (*cinfo->fdct->forward_DCT) (cinfo, compptr,
					 input_buf[compptr->component_index],
					 coef->MCU_buffer[blkn],
					 ypos, xpos, (JDIMENSION) blockcnt);
	    if (blockcnt < compptr->MCU_width) {
	      /* Create some dummy blocks at the right edge of the image. */
	      jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt],
			(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK));
	      for (bi = blockcnt; bi < compptr->MCU_width; bi++) {
		coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0];
	      }
	    }
	  } else {
	    /* Create a row of dummy blocks at the bottom of the image. */
	    jzero_far((void FAR *) coef->MCU_buffer[blkn],
		      compptr->MCU_width * SIZEOF(JBLOCK));
	    for (bi = 0; bi < compptr->MCU_width; bi++) {
	      coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0];
	    }
	  }
	  blkn += compptr->MCU_width;
	  ypos += DCTSIZE;
	}
      }
      /* Try to write the MCU.  In event of a suspension failure, we will
       * re-DCT the MCU on restart (a bit inefficient, could be fixed...)
       */
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
	/* Suspension forced; update state counters and exit */
	coef->MCU_vert_offset = yoffset;
	coef->mcu_ctr = MCU_col_num;
	return FALSE;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->mcu_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  coef->iMCU_row_num++;
  start_iMCU_row(cinfo);
  return TRUE;
}


#ifdef FULL_COEF_BUFFER_SUPPORTED

/*
 * Process some data in the first pass of a multi-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the image.
 * This amount of data is read from the source buffer, DCT'd and quantized,
 * and saved into the virtual arrays.  We also generate suitable dummy blocks
 * as needed at the right and lower edges.  (The dummy blocks are constructed
 * in the virtual arrays, which have been padded appropriately.)  This makes
 * it possible for subsequent passes not to worry about real vs. dummy blocks.
 *
 * We must also emit the data to the entropy encoder.  This is conveniently
 * done by calling compress_output() after we've loaded the current strip
 * of the virtual arrays.
 *
 * NB: input_buf contains a plane for each component in image.  All
 * components are DCT'd and loaded into the virtual arrays in this pass.
 * However, it may be that only a subset of the components are emitted to
 * the entropy encoder during this first pass; be careful about looking
 * at the scan-dependent variables (MCU dimensions, etc).
 */

METHODDEF(boolean)
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION blocks_across, MCUs_across, MCUindex;
  int bi, ci, h_samp_factor, block_row, block_rows, ndummy;
  JCOEF lastDC;
  jpeg_component_info *compptr;
  JBLOCKARRAY buffer;
  JBLOCKROW thisblockrow, lastblockrow;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Align the virtual buffer for this component. */
    buffer = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[ci],
       coef->iMCU_row_num * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, TRUE);
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (coef->iMCU_row_num < last_iMCU_row)
      block_rows = compptr->v_samp_factor;
    else {
      /* NB: can't use last_row_height here, since may not be set! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
    }
    blocks_across = compptr->width_in_blocks;
    h_samp_factor = compptr->h_samp_factor;
    /* Count number of dummy blocks to be added at the right margin. */
    ndummy = (int) (blocks_across % h_samp_factor);
    if (ndummy > 0)
      ndummy = h_samp_factor - ndummy;
    /* Perform DCT for all non-dummy blocks in this iMCU row.  Each call
     * on forward_DCT processes a complete horizontal row of DCT blocks.
     */
    for (block_row = 0; block_row < block_rows; block_row++) {
      thisblockrow = buffer[block_row];
      (*cinfo->fdct->forward_DCT) (cinfo, compptr,
				   input_buf[ci], thisblockrow,
				   (JDIMENSION) (block_row * DCTSIZE),
				   (JDIMENSION) 0, blocks_across);
      if (ndummy > 0) {
	/* Create dummy blocks at the right edge of the image. */
	thisblockrow += blocks_across; /* => first dummy block */
	jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK));
	lastDC = thisblockrow[-1][0];
	for (bi = 0; bi < ndummy; bi++) {
	  thisblockrow[bi][0] = lastDC;
	}
      }
    }
    /* If at end of image, create dummy block rows as needed.
     * The tricky part here is that within each MCU, we want the DC values
     * of the dummy blocks to match the last real block's DC value.
     * This squeezes a few more bytes out of the resulting file...
     */
    if (coef->iMCU_row_num == last_iMCU_row) {
      blocks_across += ndummy;	/* include lower right corner */
      MCUs_across = blocks_across / h_samp_factor;
      for (block_row = block_rows; block_row < compptr->v_samp_factor;
	   block_row++) {
	thisblockrow = buffer[block_row];
	lastblockrow = buffer[block_row-1];
	jzero_far((void FAR *) thisblockrow,
		  (size_t) (blocks_across * SIZEOF(JBLOCK)));
	for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) {
	  lastDC = lastblockrow[h_samp_factor-1][0];
	  for (bi = 0; bi < h_samp_factor; bi++) {
	    thisblockrow[bi][0] = lastDC;
	  }
	  thisblockrow += h_samp_factor; /* advance to next MCU in row */
	  lastblockrow += h_samp_factor;
	}
      }
    }
  }
  /* NB: compress_output will increment iMCU_row_num if successful.
   * A suspension return will result in redoing all the work above next time.
   */

  /* Emit data to the entropy encoder, sharing code with subsequent passes */
  return compress_output(cinfo, input_buf);
}


/*
 * Process some data in subsequent passes of a multi-pass case.
 * We process the equivalent of one fully interleaved MCU row ("iMCU" row)
 * per call, ie, v_samp_factor block rows for each component in the scan.
 * The data is obtained from the virtual arrays and fed to the entropy coder.
 * Returns TRUE if the iMCU row is completed, FALSE if suspended.
 *
 * NB: input_buf is ignored; it is likely to be a NULL pointer.
 */

METHODDEF(boolean)
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  int blkn, ci, xindex, yindex, yoffset;
  JDIMENSION start_col;
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  JBLOCKROW buffer_ptr;
  jpeg_component_info *compptr;

  /* Align the virtual buffers for the components used in this scan.
   * NB: during first pass, this is safe only because the buffers will
   * already be aligned properly, so jmemmgr.c won't need to do any I/O.
   */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    buffer[ci] = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       coef->iMCU_row_num * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, FALSE);
  }

  /* Loop to process one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row;
	 MCU_col_num++) {
      /* Construct list of pointers to DCT blocks belonging to this MCU */
      blkn = 0;			/* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
	compptr = cinfo->cur_comp_info[ci];
	start_col = MCU_col_num * compptr->MCU_width;
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
	    coef->MCU_buffer[blkn++] = buffer_ptr++;
	  }
	}
      }
      /* Try to write the MCU. */
      if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) {
	/* Suspension forced; update state counters and exit */
	coef->MCU_vert_offset = yoffset;
	coef->mcu_ctr = MCU_col_num;
	return FALSE;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->mcu_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  coef->iMCU_row_num++;
  start_iMCU_row(cinfo);
  return TRUE;
}

#endif /* FULL_COEF_BUFFER_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
  my_coef_ptr coef;

  coef = (my_coef_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_coef_controller));
  cinfo->coef = (struct jpeg_c_coef_controller *) coef;
  coef->pub.start_pass = start_pass_coef;

  /* Create the coefficient buffer. */
  if (need_full_buffer) {
#ifdef FULL_COEF_BUFFER_SUPPORTED
    /* Allocate a full-image virtual array for each component, */
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
    int ci;
    jpeg_component_info *compptr;

    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
	 ci++, compptr++) {
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
				(long) compptr->h_samp_factor),
	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
				(long) compptr->v_samp_factor),
	 (JDIMENSION) compptr->v_samp_factor);
    }
#else
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
  } else {
    /* We only need a single-MCU buffer. */
    JBLOCKROW buffer;
    int i;

    buffer = (JBLOCKROW)
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) {
      coef->MCU_buffer[i] = buffer + i;
    }
    coef->whole_image[0] = NULL; /* flag for no virtual arrays */
  }
}

--- NEW FILE: jversion.h ---
/*
 * jversion.h
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains software version identification.
 */


#define JVERSION	"6b  27-Mar-1998"

#define JCOPYRIGHT	"Copyright (C) 1998, Thomas G. Lane"

--- NEW FILE: makefile.dj ---
# Makefile for Independent JPEG Group's software

# This makefile is for DJGPP (Delorie's GNU C port on MS-DOS), v2.0 or later.
# Thanks to Frank J. Donahoe for this version.

# Read installation instructions before saying "make" !!

# The name of your C compiler:
CC= gcc

# You may need to adjust these cc options:
CFLAGS= -O2 -Wall -I.
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.

# Link-time cc options:
LDFLAGS= -s

# To link any special libraries, add the necessary -l commands here.
LDLIBS= 

# Put here the object file name for the correct system-dependent memory
# manager file.  For DJGPP this is usually jmemnobs.o, but you could
# use jmemname.o if you want to use named temp files instead of swap space.
SYSDEPMEM= jmemnobs.o

# miscellaneous OS-dependent stuff
# linker
LN= $(CC)
# file deletion command
RM= del
# library (.a) file creation command
AR= ar rc
# second step in .a creation (use "touch" if not needed)
AR2= ranlib

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.o jutils.o jerror.o jmemmgr.o $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.o jcapistd.o jctrans.o jcparam.o jdatadst.o jcinit.o \
        jcmaster.o jcmarker.o jcmainct.o jcprepct.o jccoefct.o jccolor.o \
        jcsample.o jchuff.o jcphuff.o jcdctmgr.o jfdctfst.o jfdctflt.o \
        jfdctint.o
# decompression library object files
DLIBOBJECTS= jdapimin.o jdapistd.o jdtrans.o jdatasrc.o jdmaster.o \
        jdinput.o jdmarker.o jdhuff.o jdphuff.o jdmainct.o jdcoefct.o \
        jdpostct.o jddctmgr.o jidctfst.o jidctflt.o jidctint.o jidctred.o \
        jdsample.o jdcolor.o jquant1.o jquant2.o jdmerge.o
# These objectfiles are included in libjpeg.a
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.o rdppm.o rdgif.o rdtarga.o rdrle.o rdbmp.o rdswitch.o \
        cdjpeg.o
DOBJECTS= djpeg.o wrppm.o wrgif.o wrtarga.o wrrle.o wrbmp.o rdcolmap.o \
        cdjpeg.o
TROBJECTS= jpegtran.o rdswitch.o cdjpeg.o transupp.o


all: libjpeg.a cjpeg.exe djpeg.exe jpegtran.exe rdjpgcom.exe wrjpgcom.exe

libjpeg.a: $(LIBOBJECTS)
	$(RM) libjpeg.a
	$(AR) libjpeg.a  $(LIBOBJECTS)
	$(AR2) libjpeg.a

cjpeg.exe: $(COBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o cjpeg.exe $(COBJECTS) libjpeg.a $(LDLIBS)

djpeg.exe: $(DOBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o djpeg.exe $(DOBJECTS) libjpeg.a $(LDLIBS)

jpegtran.exe: $(TROBJECTS) libjpeg.a
	$(LN) $(LDFLAGS) -o jpegtran.exe $(TROBJECTS) libjpeg.a $(LDLIBS)

rdjpgcom.exe: rdjpgcom.o
	$(LN) $(LDFLAGS) -o rdjpgcom.exe rdjpgcom.o $(LDLIBS)

wrjpgcom.exe: wrjpgcom.o
	$(LN) $(LDFLAGS) -o wrjpgcom.exe wrjpgcom.o $(LDLIBS)

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

clean:
	$(RM) *.o
	$(RM) cjpeg.exe
	$(RM) djpeg.exe
	$(RM) jpegtran.exe
	$(RM) rdjpgcom.exe
	$(RM) wrjpgcom.exe
	$(RM) libjpeg.a
	$(RM) testout*.*

test: cjpeg.exe djpeg.exe jpegtran.exe
	$(RM) testout*.*
	./djpeg -dct int -ppm -outfile testout.ppm  testorig.jpg
	./djpeg -dct int -bmp -colors 256 -outfile testout.bmp  testorig.jpg
	./cjpeg -dct int -outfile testout.jpg  testimg.ppm
	./djpeg -dct int -ppm -outfile testoutp.ppm testprog.jpg
	./cjpeg -dct int -progressive -opt -outfile testoutp.jpg testimg.ppm
	./jpegtran -outfile testoutt.jpg testprog.jpg
	fc /b testimg.ppm testout.ppm
	fc /b testimg.bmp testout.bmp
	fc /b testimg.jpg testout.jpg
	fc /b testimg.ppm testoutp.ppm
	fc /b testimgp.jpg testoutp.jpg
	fc /b testorig.jpg testoutt.jpg


jcapimin.o: jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.o: jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.o: jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.o: jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.o: jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.o: jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.o: jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.o: jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.o: jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.o: jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.o: jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.o: jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.o: jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.o: jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.o: jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.o: jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.o: jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.o: jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.o: jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.o: jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.o: jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.o: jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.o: jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.o: jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.o: jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.o: jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.o: jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.o: jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.o: jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.o: jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.o: jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.o: jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.o: jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.o: jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.o: jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.o: jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.o: jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.o: jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.o: jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.o: jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.o: jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.o: jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.o: jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.o: jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.o: jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.o: jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.o: jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.o: jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.o: jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.o: jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.o: cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.o: djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.o: jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.o: rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.o: wrjpgcom.c jinclude.h jconfig.h
cdjpeg.o: cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.o: rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.o: rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.o: transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.o: rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.o: wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.o: rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.o: wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.o: rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.o: wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.o: rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.o: wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.o: rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.o: wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h

--- NEW FILE: jerror.c ---
/*
 * jerror.c
 *
 * Copyright (C) 1991-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains simple error-reporting and trace-message routines.
 * These are suitable for Unix-like systems and others where writing to
 * stderr is the right thing to do.  Many applications will want to replace
 * some or all of these routines.
 *
 * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
 * you get a Windows-specific hack to display error messages in a dialog box.
 * It ain't much, but it beats dropping error messages into the bit bucket,
 * which is what happens to output to stderr under most Windows C compilers.
 *
 * These routines are used by both the compression and decompression code.
 */

/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jversion.h"
#include "jerror.h"

#ifdef USE_WINDOWS_MESSAGEBOX
#include <windows.h>
#endif

#ifndef EXIT_FAILURE		/* define exit() codes if not provided */
#define EXIT_FAILURE  1
#endif


/*
 * Create the message string table.
 * We do this from the master message list in jerror.h by re-reading
 * jerror.h with a suitable definition for macro JMESSAGE.
 * The message table is made an external symbol just in case any applications
 * want to refer to it directly.
 */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_message_table	jMsgTable
#endif

#define JMESSAGE(code,string)	string ,

const char * const jpeg_std_message_table[] = {
#include "jerror.h"
  NULL
};


/*
 * Error exit handler: must not return to caller.
 *
 * Applications may override this if they want to get control back after
 * an error.  Typically one would longjmp somewhere instead of exiting.
 * The setjmp buffer can be made a private field within an expanded error
 * handler object.  Note that the info needed to generate an error message
 * is stored in the error object, so you can generate the message now or
 * later, at your convenience.
 * You should make sure that the JPEG object is cleaned up (with jpeg_abort
 * or jpeg_destroy) at some point.
 */

METHODDEF(void)
error_exit (j_common_ptr cinfo)
{
  /* Always display the message */
  (*cinfo->err->output_message) (cinfo);

  /* Let the memory manager delete any temp files before we die */
  jpeg_destroy(cinfo);

  exit(EXIT_FAILURE);
}


/*
 * Actual output of an error or trace message.
 * Applications may override this method to send JPEG messages somewhere
 * other than stderr.
 *
 * On Windows, printing to stderr is generally completely useless,
 * so we provide optional code to produce an error-dialog popup.
 * Most Windows applications will still prefer to override this routine,
 * but if they don't, it'll do something at least marginally useful.
 *
 * NOTE: to use the library in an environment that doesn't support the
 * C stdio library, you may have to delete the call to fprintf() entirely,
 * not just not use this routine.
 */

METHODDEF(void)
output_message (j_common_ptr cinfo)
{
  char buffer[JMSG_LENGTH_MAX];

  /* Create the message */
  (*cinfo->err->format_message) (cinfo, buffer);

#ifdef USE_WINDOWS_MESSAGEBOX
  /* Display it in a message dialog box */
  MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
	     MB_OK | MB_ICONERROR);
#else
  /* Send it to stderr, adding a newline */
  fprintf(stderr, "%s\n", buffer);
#endif
}


/*
 * Decide whether to emit a trace or warning message.
 * msg_level is one of:
 *   -1: recoverable corrupt-data warning, may want to abort.
 *    0: important advisory messages (always display to user).
 *    1: first level of tracing detail.
 *    2,3,...: successively more detailed tracing messages.
 * An application might override this method if it wanted to abort on warnings
 * or change the policy about which messages to display.
 */

METHODDEF(void)
emit_message (j_common_ptr cinfo, int msg_level)
{
  struct jpeg_error_mgr * err = cinfo->err;

  if (msg_level < 0) {
    /* It's a warning message.  Since corrupt files may generate many warnings,
     * the policy implemented here is to show only the first warning,
     * unless trace_level >= 3.
     */
    if (err->num_warnings == 0 || err->trace_level >= 3)
      (*err->output_message) (cinfo);
    /* Always count warnings in num_warnings. */
    err->num_warnings++;
  } else {
    /* It's a trace message.  Show it if trace_level >= msg_level. */
    if (err->trace_level >= msg_level)
      (*err->output_message) (cinfo);
  }
}


/*
 * Format a message string for the most recent JPEG error or message.
 * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
 * characters.  Note that no '\n' character is added to the string.
 * Few applications should need to override this method.
 */

METHODDEF(void)
format_message (j_common_ptr cinfo, char * buffer)
{
  struct jpeg_error_mgr * err = cinfo->err;
  int msg_code = err->msg_code;
  const char * msgtext = NULL;
  const char * msgptr;
  char ch;
  boolean isstring;

  /* Look up message string in proper table */
  if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
    msgtext = err->jpeg_message_table[msg_code];
  } else if (err->addon_message_table != NULL &&
	     msg_code >= err->first_addon_message &&
	     msg_code <= err->last_addon_message) {
    msgtext = err->addon_message_table[msg_code - err->first_addon_message];
  }

  /* Defend against bogus message number */
  if (msgtext == NULL) {
    err->msg_parm.i[0] = msg_code;
    msgtext = err->jpeg_message_table[0];
  }

  /* Check for string parameter, as indicated by %s in the message text */
  isstring = FALSE;
  msgptr = msgtext;
  while ((ch = *msgptr++) != '\0') {
    if (ch == '%') {
      if (*msgptr == 's') isstring = TRUE;
      break;
    }
  }

  /* Format the message into the passed buffer */
  if (isstring)
    sprintf(buffer, msgtext, err->msg_parm.s);
  else
    sprintf(buffer, msgtext,
	    err->msg_parm.i[0], err->msg_parm.i[1],
	    err->msg_parm.i[2], err->msg_parm.i[3],
	    err->msg_parm.i[4], err->msg_parm.i[5],
	    err->msg_parm.i[6], err->msg_parm.i[7]);
}


/*
 * Reset error state variables at start of a new image.
 * This is called during compression startup to reset trace/error
 * processing to default state, without losing any application-specific
 * method pointers.  An application might possibly want to override
 * this method if it has additional error processing state.
 */

METHODDEF(void)
reset_error_mgr (j_common_ptr cinfo)
{
  cinfo->err->num_warnings = 0;
  /* trace_level is not reset since it is an application-supplied parameter */
  cinfo->err->msg_code = 0;	/* may be useful as a flag for "no error" */
}


/*
 * Fill in the standard error-handling methods in a jpeg_error_mgr object.
 * Typical call is:
 *	struct jpeg_compress_struct cinfo;
 *	struct jpeg_error_mgr err;
 *
 *	cinfo.err = jpeg_std_error(&err);
 * after which the application may override some of the methods.
 */

GLOBAL(struct jpeg_error_mgr *)
jpeg_std_error (struct jpeg_error_mgr * err)
{
  err->error_exit = error_exit;
  err->emit_message = emit_message;
  err->output_message = output_message;
  err->format_message = format_message;
  err->reset_error_mgr = reset_error_mgr;

  err->trace_level = 0;		/* default = no tracing */
  err->num_warnings = 0;	/* no warnings emitted yet */
  err->msg_code = 0;		/* may be useful as a flag for "no error" */

  /* Initialize message table pointers */
  err->jpeg_message_table = jpeg_std_message_table;
  err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;

  err->addon_message_table = NULL;
  err->first_addon_message = 0;	/* for safety */
  err->last_addon_message = 0;

  return err;
}

--- NEW FILE: cderror.h ---
/*
 * cderror.h
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file defines the error and message codes for the cjpeg/djpeg
 * applications.  These strings are not needed as part of the JPEG library
 * proper.
 * Edit this file to add new codes, or to translate the message strings to
 * some other language.
 */

/*
 * To define the enum list of message codes, include this file without
 * defining macro JMESSAGE.  To create a message string table, include it
 * again with a suitable JMESSAGE definition (see jerror.c for an example).
 */
#ifndef JMESSAGE
#ifndef CDERROR_H
#define CDERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* CDERROR_H */
#endif /* JMESSAGE */

#ifdef JMAKE_ENUM_LIST

typedef enum {

#define JMESSAGE(code,string)	code ,

#endif /* JMAKE_ENUM_LIST */

JMESSAGE(JMSG_FIRSTADDONCODE=1000, NULL) /* Must be first entry! */

#ifdef BMP_SUPPORTED
JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format")
JMESSAGE(JERR_BMP_BADDEPTH, "Only 8- and 24-bit BMP files are supported")
JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length")
JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1")
JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB")
JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported")
JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM")
JMESSAGE(JTRC_BMP, "%ux%u 24-bit BMP image")
JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image")
JMESSAGE(JTRC_BMP_OS2, "%ux%u 24-bit OS2 BMP image")
JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image")
#endif /* BMP_SUPPORTED */

#ifdef GIF_SUPPORTED
JMESSAGE(JERR_GIF_BUG, "GIF output got confused")
JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d")
JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB")
JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file")
JMESSAGE(JERR_GIF_NOT, "Not a GIF file")
JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image")
JMESSAGE(JTRC_GIF_BADVERSION,
	 "Warning: unexpected GIF version number '%c%c%c'")
JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x")
JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input")
JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file")
JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring")
JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image")
JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits")
#endif /* GIF_SUPPORTED */

#ifdef PPM_SUPPORTED
JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB")
JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file")
JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file")
JMESSAGE(JTRC_PGM, "%ux%u PGM image")
JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image")
JMESSAGE(JTRC_PPM, "%ux%u PPM image")
JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image")
#endif /* PPM_SUPPORTED */

#ifdef RLE_SUPPORTED
JMESSAGE(JERR_RLE_BADERROR, "Bogus error code from RLE library")
JMESSAGE(JERR_RLE_COLORSPACE, "RLE output must be grayscale or RGB")
JMESSAGE(JERR_RLE_DIMENSIONS, "Image dimensions (%ux%u) too large for RLE")
JMESSAGE(JERR_RLE_EMPTY, "Empty RLE file")
JMESSAGE(JERR_RLE_EOF, "Premature EOF in RLE header")
JMESSAGE(JERR_RLE_MEM, "Insufficient memory for RLE header")
JMESSAGE(JERR_RLE_NOT, "Not an RLE file")
JMESSAGE(JERR_RLE_TOOMANYCHANNELS, "Cannot handle %d output channels for RLE")
JMESSAGE(JERR_RLE_UNSUPPORTED, "Cannot handle this RLE setup")
JMESSAGE(JTRC_RLE, "%ux%u full-color RLE file")
JMESSAGE(JTRC_RLE_FULLMAP, "%ux%u full-color RLE file with map of length %d")
JMESSAGE(JTRC_RLE_GRAY, "%ux%u grayscale RLE file")
JMESSAGE(JTRC_RLE_MAPGRAY, "%ux%u grayscale RLE file with map of length %d")
JMESSAGE(JTRC_RLE_MAPPED, "%ux%u colormapped RLE file with map of length %d")
#endif /* RLE_SUPPORTED */

#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format")
JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file")
JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB")
JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image")
JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image")
JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image")
#else
JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled")
#endif /* TARGA_SUPPORTED */

JMESSAGE(JERR_BAD_CMAP_FILE,
	 "Color map file is invalid or of unsupported format")
JMESSAGE(JERR_TOO_MANY_COLORS,
	 "Output file format cannot handle %d colormap entries")
JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed")
#ifdef TARGA_SUPPORTED
JMESSAGE(JERR_UNKNOWN_FORMAT,
	 "Unrecognized input file format --- perhaps you need -targa")
#else
JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format")
#endif
JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format")

#ifdef JMAKE_ENUM_LIST

  JMSG_LASTADDONCODE
} ADDON_MESSAGE_CODE;

#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */

/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE

--- NEW FILE: jdct.h ---
/*
 * jdct.h
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This include file contains common declarations for the forward and
 * inverse DCT modules.  These declarations are private to the DCT managers
 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
 * The individual DCT algorithms are kept in separate files to ease 
 * machine-dependent tuning (e.g., assembly coding).
 */


/*
 * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
 * the DCT is to be performed in-place in that buffer.  Type DCTELEM is int
 * for 8-bit samples, INT32 for 12-bit samples.  (NOTE: Floating-point DCT
 * implementations use an array of type FAST_FLOAT, instead.)
 * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
 * The DCT outputs are returned scaled up by a factor of 8; they therefore
 * have a range of +-8K for 8-bit data, +-128K for 12-bit data.  This
 * convention improves accuracy in integer implementations and saves some
 * work in floating-point ones.
 * Quantization of the output coefficients is done by jcdctmgr.c.
 */

#if BITS_IN_JSAMPLE == 8
typedef int DCTELEM;		/* 16 or 32 bits is fine */
#else
typedef INT32 DCTELEM;		/* must have 32 bits */
#endif

typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));


/*
 * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
 * to an output sample array.  The routine must dequantize the input data as
 * well as perform the IDCT; for dequantization, it uses the multiplier table
 * pointed to by compptr->dct_table.  The output data is to be placed into the
 * sample array starting at a specified column.  (Any row offset needed will
 * be applied to the array pointer before it is passed to the IDCT code.)
 * Note that the number of samples emitted by the IDCT routine is
 * DCT_scaled_size * DCT_scaled_size.
 */

/* typedef inverse_DCT_method_ptr is declared in jpegint.h */

/*
 * Each IDCT routine has its own ideas about the best dct_table element type.
 */

typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
#if BITS_IN_JSAMPLE == 8
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
#define IFAST_SCALE_BITS  2	/* fractional bits in scale factors */
#else
typedef INT32 IFAST_MULT_TYPE;	/* need 32 bits for scaled quantizers */
#define IFAST_SCALE_BITS  13	/* fractional bits in scale factors */
#endif
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */


/*
 * Each IDCT routine is responsible for range-limiting its results and
 * converting them to unsigned form (0..MAXJSAMPLE).  The raw outputs could
 * be quite far out of range if the input data is corrupt, so a bulletproof
 * range-limiting step is required.  We use a mask-and-table-lookup method
 * to do the combined operations quickly.  See the comments with
 * prepare_range_limit_table (in jdmaster.c) for more info.
 */

#define IDCT_range_limit(cinfo)  ((cinfo)->sample_range_limit + CENTERJSAMPLE)

#define RANGE_MASK  (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */


/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_fdct_islow		jFDislow
#define jpeg_fdct_ifast		jFDifast
#define jpeg_fdct_float		jFDfloat
#define jpeg_idct_islow		jRDislow
#define jpeg_idct_ifast		jRDifast
#define jpeg_idct_float		jRDfloat
#define jpeg_idct_4x4		jRD4x4
#define jpeg_idct_2x2		jRD2x2
#define jpeg_idct_1x1		jRD1x1
#endif /* NEED_SHORT_EXTERNAL_NAMES */

/* Extern declarations for the forward and inverse DCT routines. */

EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));

EXTERN(void) jpeg_idct_islow
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_ifast
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_float
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_4x4
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_2x2
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
EXTERN(void) jpeg_idct_1x1
    JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
	 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));


/*
 * Macros for handling fixed-point arithmetic; these are used by many
 * but not all of the DCT/IDCT modules.
 *
 * All values are expected to be of type INT32.
 * Fractional constants are scaled left by CONST_BITS bits.
 * CONST_BITS is defined within each module using these macros,
 * and may differ from one module to the next.
 */

#define ONE	((INT32) 1)
#define CONST_SCALE (ONE << CONST_BITS)

/* Convert a positive real constant to an integer scaled by CONST_SCALE.
 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
 * thus causing a lot of useless floating-point operations at run time.
 */

#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))

/* Descale and correctly round an INT32 value that's scaled by N bits.
 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
 * the fudge factor is correct for either sign of X.
 */

#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)

/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * This macro is used only when the two inputs will actually be no more than
 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
 * full 32x32 multiply.  This provides a useful speedup on many machines.
 * Unfortunately there is no way to specify a 16x16->32 multiply portably
 * in C, but some C compilers will do the right thing if you provide the
 * correct combination of casts.
 */

#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT16) (const)))
#endif
#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */
#define MULTIPLY16C16(var,const)  (((INT16) (var)) * ((INT32) (const)))
#endif

#ifndef MULTIPLY16C16		/* default definition */
#define MULTIPLY16C16(var,const)  ((var) * (const))
#endif

/* Same except both inputs are variables. */

#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */
#define MULTIPLY16V16(var1,var2)  (((INT16) (var1)) * ((INT16) (var2)))
#endif

#ifndef MULTIPLY16V16		/* default definition */
#define MULTIPLY16V16(var1,var2)  ((var1) * (var2))
#endif

--- NEW FILE: Makefile ---
# Generated automatically from makefile.cfg by configure.
# Makefile for Independent JPEG Group's software

# makefile.cfg is edited by configure to produce a custom Makefile.

# Read installation instructions before saying "make" !!

# For compiling with source and object files in different directories.
srcdir = .

# Where to install the programs and man pages.
prefix = /usr/local
exec_prefix = ${prefix}
bindir = $(exec_prefix)/bin
libdir = $(exec_prefix)/lib
includedir = $(prefix)/include
binprefix =
manprefix =
manext = 1
mandir = $(prefix)/man/man$(manext)

# The name of your C compiler:
#CC= gcc

# You may need to adjust these cc options:
CFLAGS += -I$(srcdir)
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.
# However, any special defines for ansi2knr.c may be included here:
ANSI2KNRFLAGS= 

# Link-time cc options:
LDFLAGS= 

# To link any special libraries, add the necessary -l commands here.
LDLIBS= 

# If using GNU libtool, LIBTOOL references it; if not, LIBTOOL is empty.
LIBTOOL = 
# $(O) expands to "lo" if using libtool, plain "o" if not.
# Similarly, $(A) expands to "la" or "a".
O = o
A = a

# Library version ID; libtool uses this for the shared library version number.
# Note: we suggest this match the macro of the same name in jpeglib.h.
JPEG_LIB_VERSION = 62

# Put here the object file name for the correct system-dependent memory
# manager file.  For Unix this is usually jmemnobs.o, but you may want
# to use jmemansi.o or jmemname.o if you have limited swap space.
SYSDEPMEM= jmemnobs.$(O)

# miscellaneous OS-dependent stuff
SHELL= /bin/sh
# linker
#LN= $(CC)
# file deletion command
RM= rm -f
# directory creation command
MKDIR= mkdir
# library (.a) file creation command
MYAR= $(AR) rc
# second step in .a creation (use "touch" if not needed)
#AR2= ranlib
MYAR2 = $(RANLIB)
# installation program
INSTALL= /usr/bin/install -c
INSTALL_PROGRAM= ${INSTALL}
INSTALL_LIB= ${INSTALL} -m 644
INSTALL_DATA= ${INSTALL} -m 644

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.$(O) jutils.$(O) jerror.$(O) jmemmgr.$(O) $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.$(O) jcapistd.$(O) jctrans.$(O) jcparam.$(O) \
        jdatadst.$(O) jcinit.$(O) jcmaster.$(O) jcmarker.$(O) jcmainct.$(O) \
        jcprepct.$(O) jccoefct.$(O) jccolor.$(O) jcsample.$(O) jchuff.$(O) \
        jcphuff.$(O) jcdctmgr.$(O) jfdctfst.$(O) jfdctflt.$(O) \
        jfdctint.$(O)
# decompression library object files
DLIBOBJECTS= jdapimin.$(O) jdapistd.$(O) jdtrans.$(O) jdatasrc.$(O) \
        jdmaster.$(O) jdinput.$(O) jdmarker.$(O) jdhuff.$(O) jdphuff.$(O) \
        jdmainct.$(O) jdcoefct.$(O) jdpostct.$(O) jddctmgr.$(O) \
        jidctfst.$(O) jidctflt.$(O) jidctint.$(O) jidctred.$(O) \
        jdsample.$(O) jdcolor.$(O) jquant1.$(O) jquant2.$(O) jdmerge.$(O)
# These objectfiles are included in libjpeg.a
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.$(O) rdppm.$(O) rdgif.$(O) rdtarga.$(O) rdrle.$(O) \
        rdbmp.$(O) rdswitch.$(O) cdjpeg.$(O)
DOBJECTS= djpeg.$(O) wrppm.$(O) wrgif.$(O) wrtarga.$(O) wrrle.$(O) \
        wrbmp.$(O) rdcolmap.$(O) cdjpeg.$(O)
TROBJECTS= jpegtran.$(O) rdswitch.$(O) cdjpeg.$(O) transupp.$(O)


#all:  libjpeg.$(A) cjpeg djpeg jpegtran rdjpgcom wrjpgcom
all:  libjpeg.$(A) 

# Special compilation rules to support ansi2knr and libtool.
.SUFFIXES: .lo .la

# How to compile with libtool.
# .c.lo:
# 	$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c $(srcdir)/$*.c

# How to use ansi2knr, when not using libtool.
# .c.o:
# 	./ansi2knr $(srcdir)/$*.c knr/$*.c
# 	$(CC) $(CFLAGS) -c knr/$*.c
# 	$(RM) knr/$*.c

# How to use ansi2knr AND libtool.
# .c.lo:
# 	./ansi2knr $(srcdir)/$*.c knr/$*.c
# 	$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c knr/$*.c
# 	$(RM) knr/$*.c

ansi2knr: ansi2knr.c
	$(CC) $(CFLAGS) $(ANSI2KNRFLAGS) -o ansi2knr $(srcdir)/ansi2knr.c
	$(MKDIR) knr

# the library:

# without libtool:
libjpeg.a:  $(LIBOBJECTS)
	$(RM) libjpeg.a
	$(MYAR) libjpeg.a  $(LIBOBJECTS)
	$(MYAR2) libjpeg.a

# with libtool:
libjpeg.la:  $(LIBOBJECTS)
	$(LIBTOOL) --mode=link $(CC) -o libjpeg.la $(LIBOBJECTS) \
		-rpath $(libdir) -version-info $(JPEG_LIB_VERSION)

# sample programs:

cjpeg: $(COBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.$(A) $(LDLIBS)

djpeg: $(DOBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.$(A) $(LDLIBS)

jpegtran: $(TROBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.$(A) $(LDLIBS)

rdjpgcom: rdjpgcom.$(O)
	$(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.$(O) $(LDLIBS)

wrjpgcom: wrjpgcom.$(O)
	$(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.$(O) $(LDLIBS)

# Installation rules:

install: cjpeg djpeg jpegtran rdjpgcom wrjpgcom 
	$(INSTALL_PROGRAM) cjpeg $(bindir)/$(binprefix)cjpeg
	$(INSTALL_PROGRAM) djpeg $(bindir)/$(binprefix)djpeg
	$(INSTALL_PROGRAM) jpegtran $(bindir)/$(binprefix)jpegtran
	$(INSTALL_PROGRAM) rdjpgcom $(bindir)/$(binprefix)rdjpgcom
	$(INSTALL_PROGRAM) wrjpgcom $(bindir)/$(binprefix)wrjpgcom
	$(INSTALL_DATA) $(srcdir)/cjpeg.1 $(mandir)/$(manprefix)cjpeg.$(manext)
	$(INSTALL_DATA) $(srcdir)/djpeg.1 $(mandir)/$(manprefix)djpeg.$(manext)
	$(INSTALL_DATA) $(srcdir)/jpegtran.1 $(mandir)/$(manprefix)jpegtran.$(manext)
	$(INSTALL_DATA) $(srcdir)/rdjpgcom.1 $(mandir)/$(manprefix)rdjpgcom.$(manext)
	$(INSTALL_DATA) $(srcdir)/wrjpgcom.1 $(mandir)/$(manprefix)wrjpgcom.$(manext)

install-lib: libjpeg.$(A) install-headers
	$(INSTALL_LIB) libjpeg.$(A) $(libdir)/$(binprefix)libjpeg.$(A)

install-headers: jconfig.h
	$(INSTALL_DATA) jconfig.h $(includedir)/jconfig.h
	$(INSTALL_DATA) $(srcdir)/jpeglib.h $(includedir)/jpeglib.h
	$(INSTALL_DATA) $(srcdir)/jmorecfg.h $(includedir)/jmorecfg.h
	$(INSTALL_DATA) $(srcdir)/jerror.h $(includedir)/jerror.h

romfs:
	#if [ "$(CONFIG_X86)" = "y" ]; then \
	#	[ -d $(ROMFSDIR)/lib ] || mkdir -p $(ROMFSDIR)/lib ; \
	#	$(ROMFSINST) libjpeg.so.2 /lib/libjpeg.so.2 ; \
	#fi

clean:
	-$(RM) *.o *.lo libjpeg.a libjpeg.la
	-$(RM) cjpeg djpeg jpegtran rdjpgcom wrjpgcom
	-$(RM) ansi2knr core testout* config.log config.status
	-$(RM) -r knr .libs _libs

distclean: clean
	$(RM) Makefile jconfig.h libtool config.cache

test: cjpeg djpeg jpegtran
	$(RM) testout*
	./djpeg -dct int -ppm -outfile testout.ppm  $(srcdir)/testorig.jpg
	./djpeg -dct int -bmp -colors 256 -outfile testout.bmp  $(srcdir)/testorig.jpg
	./cjpeg -dct int -outfile testout.jpg  $(srcdir)/testimg.ppm
	./djpeg -dct int -ppm -outfile testoutp.ppm $(srcdir)/testprog.jpg
	./cjpeg -dct int -progressive -opt -outfile testoutp.jpg $(srcdir)/testimg.ppm
	./jpegtran -outfile testoutt.jpg $(srcdir)/testprog.jpg
	cmp $(srcdir)/testimg.ppm testout.ppm
	cmp $(srcdir)/testimg.bmp testout.bmp
	cmp $(srcdir)/testimg.jpg testout.jpg
	cmp $(srcdir)/testimg.ppm testoutp.ppm
	cmp $(srcdir)/testimgp.jpg testoutp.jpg
	cmp $(srcdir)/testorig.jpg testoutt.jpg

check: test

# Mistake catcher:

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

# GNU Make likes to know which target names are not really files to be made:
.PHONY: all install install-lib install-headers clean distclean test check


jcapimin.$(O): jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.$(O): jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.$(O): jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.$(O): jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.$(O): jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.$(O): jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.$(O): jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.$(O): jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.$(O): jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.$(O): jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.$(O): jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.$(O): jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.$(O): jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.$(O): jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.$(O): jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.$(O): jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.$(O): jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.$(O): jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.$(O): jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.$(O): jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.$(O): jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.$(O): jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.$(O): jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.$(O): jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.$(O): jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.$(O): jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.$(O): jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.$(O): jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.$(O): jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.$(O): jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.$(O): jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.$(O): jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.$(O): jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.$(O): jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.$(O): jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.$(O): jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.$(O): jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.$(O): jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.$(O): jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.$(O): jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.$(O): jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.$(O): jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.$(O): jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.$(O): jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.$(O): jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.$(O): jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.$(O): jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.$(O): jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.$(O): jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.$(O): jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.$(O): cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.$(O): djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.$(O): jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.$(O): rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.$(O): wrjpgcom.c jinclude.h jconfig.h
cdjpeg.$(O): cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.$(O): rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.$(O): rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.$(O): transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.$(O): rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.$(O): wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.$(O): rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.$(O): wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.$(O): rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.$(O): wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.$(O): rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.$(O): wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.$(O): rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.$(O): wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h

--- NEW FILE: jmemdosa.asm ---
;
; jmemdosa.asm
;
; Copyright (C) 1992, Thomas G. Lane.
; This file is part of the Independent JPEG Group's software.
; For conditions of distribution and use, see the accompanying README file.
;
; This file contains low-level interface routines to support the MS-DOS
; backing store manager (jmemdos.c).  Routines are provided to access disk
; files through direct DOS calls, and to access XMS and EMS drivers.
;
; This file should assemble with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).  If you haven't got
; a compatible assembler, better fall back to jmemansi.c or jmemname.c.
;
; To minimize dependence on the C compiler's register usage conventions,
; we save and restore all 8086 registers, even though most compilers only
; require SI,DI,DS to be preserved.  Also, we use only 16-bit-wide return
; values, which everybody returns in AX.
;
; Based on code contributed by Ge' Weijers.
;

JMEMDOSA_TXT	segment byte public 'CODE'

		assume	cs:JMEMDOSA_TXT

		public	_jdos_open
		public	_jdos_close
		public	_jdos_seek
		public	_jdos_read
		public	_jdos_write
		public	_jxms_getdriver
		public	_jxms_calldriver
		public	_jems_available
		public	_jems_calldriver

;
; short far jdos_open (short far * handle, char far * filename)
;
; Create and open a temporary file
;
_jdos_open	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	cx,0			; normal file attributes
		lds	dx,dword ptr [bp+10]	; get filename pointer
		mov	ah,3ch			; create file
		int	21h
		jc	open_err		; if failed, return error code
		lds	bx,dword ptr [bp+6]	; get handle pointer
		mov	word ptr [bx],ax	; save the handle
		xor	ax,ax			; return zero for OK
open_err:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jdos_open	endp


;
; short far jdos_close (short handle)
;
; Close the file handle
;
_jdos_close	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	bx,word ptr [bp+6]	; file handle
		mov	ah,3eh			; close file
		int	21h
		jc	close_err		; if failed, return error code
		xor	ax,ax			; return zero for OK
close_err:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jdos_close	endp


;
; short far jdos_seek (short handle, long offset)
;
; Set file position
;
_jdos_seek	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	bx,word ptr [bp+6]	; file handle
		mov	dx,word ptr [bp+8]	; LS offset
		mov	cx,word ptr [bp+10]	; MS offset
		mov	ax,4200h		; absolute seek
		int	21h
		jc	seek_err		; if failed, return error code
		xor	ax,ax			; return zero for OK
seek_err:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jdos_seek	endp


;
; short far jdos_read (short handle, void far * buffer, unsigned short count)
;
; Read from file
;
_jdos_read	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	bx,word ptr [bp+6]	; file handle
		lds	dx,dword ptr [bp+8]	; buffer address
		mov	cx,word ptr [bp+12]	; number of bytes
		mov	ah,3fh			; read file
		int	21h
		jc	read_err		; if failed, return error code
		cmp	ax,word ptr [bp+12]	; make sure all bytes were read
		je	read_ok
		mov	ax,1			; else return 1 for not OK
		jmp	short read_err
read_ok:	xor	ax,ax			; return zero for OK
read_err:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jdos_read	endp


;
; short far jdos_write (short handle, void far * buffer, unsigned short count)
;
; Write to file
;
_jdos_write	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	bx,word ptr [bp+6]	; file handle
		lds	dx,dword ptr [bp+8]	; buffer address
		mov	cx,word ptr [bp+12]	; number of bytes
		mov	ah,40h			; write file
		int	21h
		jc	write_err		; if failed, return error code
		cmp	ax,word ptr [bp+12]	; make sure all bytes written
		je	write_ok
		mov	ax,1			; else return 1 for not OK
		jmp	short write_err
write_ok:	xor	ax,ax			; return zero for OK
write_err:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jdos_write	endp


;
; void far jxms_getdriver (XMSDRIVER far *)
;
; Get the address of the XMS driver, or NULL if not available
;
_jxms_getdriver	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov 	ax,4300h		; call multiplex interrupt with
		int	2fh			; a magic cookie, hex 4300
		cmp 	al,80h			; AL should contain hex 80
		je	xmsavail
		xor 	dx,dx			; no XMS driver available
		xor 	ax,ax			; return a nil pointer
		jmp	short xmsavail_done
xmsavail:	mov 	ax,4310h		; fetch driver address with
		int	2fh			; another magic cookie
		mov 	dx,es			; copy address to dx:ax
		mov 	ax,bx
xmsavail_done:	les 	bx,dword ptr [bp+6]	; get pointer to return value
		mov	word ptr es:[bx],ax
		mov	word ptr es:[bx+2],dx
		pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop	bp
		ret
_jxms_getdriver	endp


;
; void far jxms_calldriver (XMSDRIVER, XMScontext far *)
;
; The XMScontext structure contains values for the AX,DX,BX,SI,DS registers.
; These are loaded, the XMS call is performed, and the new values of the
; AX,DX,BX registers are written back to the context structure.
;
_jxms_calldriver 	proc	far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		les 	bx,dword ptr [bp+10]	; get XMScontext pointer
		mov 	ax,word ptr es:[bx]	; load registers
		mov 	dx,word ptr es:[bx+2]
		mov 	si,word ptr es:[bx+6]
		mov 	ds,word ptr es:[bx+8]
		mov 	bx,word ptr es:[bx+4]
		call	dword ptr [bp+6]	; call the driver
		mov	cx,bx			; save returned BX for a sec
		les 	bx,dword ptr [bp+10]	; get XMScontext pointer
		mov 	word ptr es:[bx],ax	; put back ax,dx,bx
		mov 	word ptr es:[bx+2],dx
		mov 	word ptr es:[bx+4],cx
		pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jxms_calldriver 	endp


;
; short far jems_available (void)
;
; Have we got an EMS driver? (this comes straight from the EMS 4.0 specs)
;
_jems_available	proc	far
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		mov	ax,3567h		; get interrupt vector 67h
		int	21h
		push	cs
		pop	ds
		mov	di,000ah		; check offs 10 in returned seg
		lea	si,ASCII_device_name	; against literal string
		mov	cx,8
		cld
		repe cmpsb
		jne	no_ems
		mov	ax,1			; match, it's there
		jmp	short avail_done
no_ems:		xor	ax,ax			; it's not there
avail_done:	pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		ret

ASCII_device_name	db	"EMMXXXX0"

_jems_available	endp


;
; void far jems_calldriver (EMScontext far *)
;
; The EMScontext structure contains values for the AX,DX,BX,SI,DS registers.
; These are loaded, the EMS trap is performed, and the new values of the
; AX,DX,BX registers are written back to the context structure.
;
_jems_calldriver	proc far
		push	bp			; linkage
		mov 	bp,sp
		push	si			; save all registers for safety
		push	di
		push	bx
		push	cx
		push	dx
		push	es
		push	ds
		les 	bx,dword ptr [bp+6]	; get EMScontext pointer
		mov 	ax,word ptr es:[bx]	; load registers
		mov 	dx,word ptr es:[bx+2]
		mov 	si,word ptr es:[bx+6]
		mov 	ds,word ptr es:[bx+8]
		mov 	bx,word ptr es:[bx+4]
		int	67h			; call the EMS driver
		mov	cx,bx			; save returned BX for a sec
		les 	bx,dword ptr [bp+6]	; get EMScontext pointer
		mov 	word ptr es:[bx],ax	; put back ax,dx,bx
		mov 	word ptr es:[bx+2],dx
		mov 	word ptr es:[bx+4],cx
		pop	ds			; restore registers and exit
		pop	es
		pop	dx
		pop	cx
		pop	bx
		pop	di
		pop	si
		pop 	bp
		ret
_jems_calldriver	endp

JMEMDOSA_TXT	ends

		end

--- NEW FILE: wrppm.c ---
/*
 * wrppm.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to write output images in PPM/PGM format.
 * The extended 2-byte-per-sample raw PPM/PGM formats are supported.
 * The PBMPLUS library is NOT required to compile this software
 * (but it is highly useful as a set of PPM image manipulation programs).
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume output to
 * an ordinary stdio stream.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef PPM_SUPPORTED


/*
 * For 12-bit JPEG data, we either downscale the values to 8 bits
 * (to write standard byte-per-sample PPM/PGM files), or output
 * nonstandard word-per-sample PPM/PGM files.  Downscaling is done
 * if PPM_NORAWWORD is defined (this can be done in the Makefile
 * or in jconfig.h).
 * (When the core library supports data precision reduction, a cleaner
 * implementation will be to ask for that instead.)
 */

#if BITS_IN_JSAMPLE == 8
#define PUTPPMSAMPLE(ptr,v)  *ptr++ = (char) (v)
#define BYTESPERSAMPLE 1
#define PPM_MAXVAL 255
#else
#ifdef PPM_NORAWWORD
#define PUTPPMSAMPLE(ptr,v)  *ptr++ = (char) ((v) >> (BITS_IN_JSAMPLE-8))
#define BYTESPERSAMPLE 1
#define PPM_MAXVAL 255
#else
/* The word-per-sample format always puts the LSB first. */
#define PUTPPMSAMPLE(ptr,v)			\
	{ register int val_ = v;		\
	  *ptr++ = (char) (val_ & 0xFF);	\
	  *ptr++ = (char) ((val_ >> 8) & 0xFF);	\
	}
#define BYTESPERSAMPLE 2
#define PPM_MAXVAL ((1<<BITS_IN_JSAMPLE)-1)
#endif
#endif


/*
 * When JSAMPLE is the same size as char, we can just fwrite() the
 * decompressed data to the PPM or PGM file.  On PCs, in order to make this
 * work the output buffer must be allocated in near data space, because we are
 * assuming small-data memory model wherein fwrite() can't reach far memory.
 * If you need to process very wide images on a PC, you might have to compile
 * in large-memory model, or else replace fwrite() with a putc() loop ---
 * which will be much slower.
 */


/* Private version of data destination object */

typedef struct {
  struct djpeg_dest_struct pub;	/* public fields */

  /* Usually these two pointers point to the same place: */
  char *iobuffer;		/* fwrite's I/O buffer */
  JSAMPROW pixrow;		/* decompressor output buffer */
  size_t buffer_width;		/* width of I/O buffer */
  JDIMENSION samples_per_row;	/* JSAMPLEs per output row */
} ppm_dest_struct;

typedef ppm_dest_struct * ppm_dest_ptr;


/*
 * Write some pixel data.
 * In this module rows_supplied will always be 1.
 *
 * put_pixel_rows handles the "normal" 8-bit case where the decompressor
 * output buffer is physically the same as the fwrite buffer.
 */

METHODDEF(void)
put_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		JDIMENSION rows_supplied)
{
  ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;

  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


/*
 * This code is used when we have to copy the data and apply a pixel
 * format translation.  Typically this only happens in 12-bit mode.
 */

METHODDEF(void)
copy_pixel_rows (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		 JDIMENSION rows_supplied)
{
  ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
  register char * bufferptr;
  register JSAMPROW ptr;
  register JDIMENSION col;

  ptr = dest->pub.buffer[0];
  bufferptr = dest->iobuffer;
  for (col = dest->samples_per_row; col > 0; col--) {
    PUTPPMSAMPLE(bufferptr, GETJSAMPLE(*ptr++));
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


/*
 * Write some pixel data when color quantization is in effect.
 * We have to demap the color index values to straight data.
 */

METHODDEF(void)
put_demapped_rgb (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		  JDIMENSION rows_supplied)
{
  ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
  register char * bufferptr;
  register int pixval;
  register JSAMPROW ptr;
  register JSAMPROW color_map0 = cinfo->colormap[0];
  register JSAMPROW color_map1 = cinfo->colormap[1];
  register JSAMPROW color_map2 = cinfo->colormap[2];
  register JDIMENSION col;

  ptr = dest->pub.buffer[0];
  bufferptr = dest->iobuffer;
  for (col = cinfo->output_width; col > 0; col--) {
    pixval = GETJSAMPLE(*ptr++);
    PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map0[pixval]));
    PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map1[pixval]));
    PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map2[pixval]));
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


METHODDEF(void)
put_demapped_gray (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo,
		   JDIMENSION rows_supplied)
{
  ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;
  register char * bufferptr;
  register JSAMPROW ptr;
  register JSAMPROW color_map = cinfo->colormap[0];
  register JDIMENSION col;

  ptr = dest->pub.buffer[0];
  bufferptr = dest->iobuffer;
  for (col = cinfo->output_width; col > 0; col--) {
    PUTPPMSAMPLE(bufferptr, GETJSAMPLE(color_map[GETJSAMPLE(*ptr++)]));
  }
  (void) JFWRITE(dest->pub.output_file, dest->iobuffer, dest->buffer_width);
}


/*
 * Startup: write the file header.
 */

METHODDEF(void)
start_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  ppm_dest_ptr dest = (ppm_dest_ptr) dinfo;

  /* Emit file header */
  switch (cinfo->out_color_space) {
  case JCS_GRAYSCALE:
    /* emit header for raw PGM format */
    fprintf(dest->pub.output_file, "P5\n%ld %ld\n%d\n",
	    (long) cinfo->output_width, (long) cinfo->output_height,
	    PPM_MAXVAL);
    break;
  case JCS_RGB:
    /* emit header for raw PPM format */
    fprintf(dest->pub.output_file, "P6\n%ld %ld\n%d\n",
	    (long) cinfo->output_width, (long) cinfo->output_height,
	    PPM_MAXVAL);
    break;
  default:
    ERREXIT(cinfo, JERR_PPM_COLORSPACE);
  }
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_output_ppm (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo)
{
  /* Make sure we wrote the output file OK */
  fflush(dinfo->output_file);
  if (ferror(dinfo->output_file))
    ERREXIT(cinfo, JERR_FILE_WRITE);
}


/*
 * The module selection routine for PPM format output.
 */

GLOBAL(djpeg_dest_ptr)
jinit_write_ppm (j_decompress_ptr cinfo)
{
  ppm_dest_ptr dest;

  /* Create module interface object, fill in method pointers */
  dest = (ppm_dest_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(ppm_dest_struct));
  dest->pub.start_output = start_output_ppm;
  dest->pub.finish_output = finish_output_ppm;

  /* Calculate output image dimensions so we can allocate space */
  jpeg_calc_output_dimensions(cinfo);

  /* Create physical I/O buffer.  Note we make this near on a PC. */
  dest->samples_per_row = cinfo->output_width * cinfo->out_color_components;
  dest->buffer_width = dest->samples_per_row * (BYTESPERSAMPLE * SIZEOF(char));
  dest->iobuffer = (char *) (*cinfo->mem->alloc_small)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, dest->buffer_width);

  if (cinfo->quantize_colors || BITS_IN_JSAMPLE != 8 ||
      SIZEOF(JSAMPLE) != SIZEOF(char)) {
    /* When quantizing, we need an output buffer for colormap indexes
     * that's separate from the physical I/O buffer.  We also need a
     * separate buffer if pixel format translation must take place.
     */
    dest->pub.buffer = (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       cinfo->output_width * cinfo->output_components, (JDIMENSION) 1);
    dest->pub.buffer_height = 1;
    if (! cinfo->quantize_colors)
      dest->pub.put_pixel_rows = copy_pixel_rows;
    else if (cinfo->out_color_space == JCS_GRAYSCALE)
      dest->pub.put_pixel_rows = put_demapped_gray;
    else
      dest->pub.put_pixel_rows = put_demapped_rgb;
  } else {
    /* We will fwrite() directly from decompressor output buffer. */
    /* Synthesize a JSAMPARRAY pointer structure */
    /* Cast here implies near->far pointer conversion on PCs */
    dest->pixrow = (JSAMPROW) dest->iobuffer;
    dest->pub.buffer = & dest->pixrow;
    dest->pub.buffer_height = 1;
    dest->pub.put_pixel_rows = put_pixel_rows;
  }

  return (djpeg_dest_ptr) dest;
}

#endif /* PPM_SUPPORTED */

--- NEW FILE: cjpeg.1 ---
.TH CJPEG 1 "20 March 1998"
.SH NAME
cjpeg \- compress an image file to a JPEG file
.SH SYNOPSIS
.B cjpeg
[
.I options
]
[
.I filename
]
.LP
.SH DESCRIPTION
.LP
.B cjpeg
compresses the named image file, or the standard input if no file is
named, and produces a JPEG/JFIF file on the standard output.
The currently supported input file formats are: PPM (PBMPLUS color
format), PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster
Toolkit format).  (RLE is supported only if the URT library is available.)
.SH OPTIONS
All switch names may be abbreviated; for example,
.B \-grayscale
may be written
.B \-gray
or
.BR \-gr .
Most of the "basic" switches can be abbreviated to as little as one letter.
Upper and lower case are equivalent (thus
.B \-BMP
is the same as
.BR \-bmp ).
British spellings are also accepted (e.g.,
.BR \-greyscale ),
though for brevity these are not mentioned below.
.PP
The basic switches are:
.TP
.BI \-quality " N"
Scale quantization tables to adjust image quality.  Quality is 0 (worst) to
100 (best); default is 75.  (See below for more info.)
.TP
.B \-grayscale
Create monochrome JPEG file from color input.  Be sure to use this switch when
compressing a grayscale BMP file, because
.B cjpeg
isn't bright enough to notice whether a BMP file uses only shades of gray.
By saying
.BR \-grayscale ,
you'll get a smaller JPEG file that takes less time to process.
.TP
.B \-optimize
Perform optimization of entropy encoding parameters.  Without this, default
encoding parameters are used.
.B \-optimize
usually makes the JPEG file a little smaller, but
.B cjpeg
runs somewhat slower and needs much more memory.  Image quality and speed of
decompression are unaffected by
.BR \-optimize .
.TP
.B \-progressive
Create progressive JPEG file (see below).
.TP
.B \-targa
Input file is Targa format.  Targa files that contain an "identification"
field will not be automatically recognized by
.BR cjpeg ;
for such files you must specify
.B \-targa
to make
.B cjpeg
treat the input as Targa format.
For most Targa files, you won't need this switch.
.PP
The
.B \-quality
switch lets you trade off compressed file size against quality of the
reconstructed image: the higher the quality setting, the larger the JPEG file,
and the closer the output image will be to the original input.  Normally you
want to use the lowest quality setting (smallest file) that decompresses into
something visually indistinguishable from the original image.  For this
purpose the quality setting should be between 50 and 95; the default of 75 is
often about right.  If you see defects at
.B \-quality
75, then go up 5 or 10 counts at a time until you are happy with the output
image.  (The optimal setting will vary from one image to another.)
.PP
.B \-quality
100 will generate a quantization table of all 1's, minimizing loss in the
quantization step (but there is still information loss in subsampling, as well
as roundoff error).  This setting is mainly of interest for experimental
purposes.  Quality values above about 95 are
.B not
recommended for normal use; the compressed file size goes up dramatically for
hardly any gain in output image quality.
.PP
In the other direction, quality values below 50 will produce very small files
of low image quality.  Settings around 5 to 10 might be useful in preparing an
index of a large image library, for example.  Try
.B \-quality
2 (or so) for some amusing Cubist effects.  (Note: quality
values below about 25 generate 2-byte quantization tables, which are
considered optional in the JPEG standard.
.B cjpeg
emits a warning message when you give such a quality value, because some
other JPEG programs may be unable to decode the resulting file.  Use
.B \-baseline
if you need to ensure compatibility at low quality values.)
.PP
The
.B \-progressive
switch creates a "progressive JPEG" file.  In this type of JPEG file, the data
is stored in multiple scans of increasing quality.  If the file is being
transmitted over a slow communications link, the decoder can use the first
scan to display a low-quality image very quickly, and can then improve the
display with each subsequent scan.  The final image is exactly equivalent to a
standard JPEG file of the same quality setting, and the total file size is
about the same --- often a little smaller.
.B Caution:
progressive JPEG is not yet widely implemented, so many decoders will be
unable to view a progressive JPEG file at all.
.PP
Switches for advanced users:
.TP
.B \-dct int
Use integer DCT method (default).
.TP
.B \-dct fast
Use fast integer DCT (less accurate).
.TP
.B \-dct float
Use floating-point DCT method.
The float method is very slightly more accurate than the int method, but is
much slower unless your machine has very fast floating-point hardware.  Also
note that results of the floating-point method may vary slightly across
machines, while the integer methods should give the same results everywhere.
The fast integer method is much less accurate than the other two.
.TP
.BI \-restart " N"
Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is
attached to the number.
.B \-restart 0
(the default) means no restart markers.
.TP
.BI \-smooth " N"
Smooth the input image to eliminate dithering noise.  N, ranging from 1 to
100, indicates the strength of smoothing.  0 (the default) means no smoothing.
.TP
.BI \-maxmemory " N"
Set limit for amount of memory to use in processing large images.  Value is
in thousands of bytes, or millions of bytes if "M" is attached to the
number.  For example,
.B \-max 4m
selects 4000000 bytes.  If more space is needed, temporary files will be used.
.TP
.BI \-outfile " name"
Send output image to the named file, not to standard output.
.TP
.B \-verbose
Enable debug printout.  More
.BR \-v 's
give more output.  Also, version information is printed at startup.
.TP
.B \-debug
Same as
.BR \-verbose .
.PP
The
.B \-restart
option inserts extra markers that allow a JPEG decoder to resynchronize after
a transmission error.  Without restart markers, any damage to a compressed
file will usually ruin the image from the point of the error to the end of the
image; with restart markers, the damage is usually confined to the portion of
the image up to the next restart marker.  Of course, the restart markers
occupy extra space.  We recommend
.B \-restart 1
for images that will be transmitted across unreliable networks such as Usenet.
.PP
The
.B \-smooth
option filters the input to eliminate fine-scale noise.  This is often useful
when converting dithered images to JPEG: a moderate smoothing factor of 10 to
50 gets rid of dithering patterns in the input file, resulting in a smaller
JPEG file and a better-looking image.  Too large a smoothing factor will
visibly blur the image, however.
.PP
Switches for wizards:
.TP
.B \-baseline
Force baseline-compatible quantization tables to be generated.  This clamps
quantization values to 8 bits even at low quality settings.  (This switch is
poorly named, since it does not ensure that the output is actually baseline
JPEG.  For example, you can use
.B \-baseline
and
.B \-progressive
together.)
.TP
.BI \-qtables " file"
Use the quantization tables given in the specified text file.
.TP
.BI \-qslots " N[,...]"
Select which quantization table to use for each color component.
.TP
.BI \-sample " HxV[,...]"
Set JPEG sampling factors for each color component.
.TP
.BI \-scans " file"
Use the scan script given in the specified text file.
.PP
The "wizard" switches are intended for experimentation with JPEG.  If you
don't know what you are doing, \fBdon't use them\fR.  These switches are
documented further in the file wizard.doc.
.SH EXAMPLES
.LP
This example compresses the PPM file foo.ppm with a quality factor of
60 and saves the output as foo.jpg:
.IP
.B cjpeg \-quality
.I 60 foo.ppm
.B >
.I foo.jpg
.SH HINTS
Color GIF files are not the ideal input for JPEG; JPEG is really intended for
compressing full-color (24-bit) images.  In particular, don't try to convert
cartoons, line drawings, and other images that have only a few distinct
colors.  GIF works great on these, JPEG does not.  If you want to convert a
GIF to JPEG, you should experiment with
.BR cjpeg 's
.B \-quality
and
.B \-smooth
options to get a satisfactory conversion.
.B \-smooth 10
or so is often helpful.
.PP
Avoid running an image through a series of JPEG compression/decompression
cycles.  Image quality loss will accumulate; after ten or so cycles the image
may be noticeably worse than it was after one cycle.  It's best to use a
lossless format while manipulating an image, then convert to JPEG format when
you are ready to file the image away.
.PP
The
.B \-optimize
option to
.B cjpeg
is worth using when you are making a "final" version for posting or archiving.
It's also a win when you are using low quality settings to make very small
JPEG files; the percentage improvement is often a lot more than it is on
larger files.  (At present,
.B \-optimize
mode is always selected when generating progressive JPEG files.)
.SH ENVIRONMENT
.TP
.B JPEGMEM
If this environment variable is set, its value is the default memory limit.
The value is specified as described for the
.B \-maxmemory
switch.
.B JPEGMEM
overrides the default value specified when the program was compiled, and
itself is overridden by an explicit
.BR \-maxmemory .
.SH SEE ALSO
.BR djpeg (1),
.BR jpegtran (1),
.BR rdjpgcom (1),
.BR wrjpgcom (1)
.br
.BR ppm (5),
.BR pgm (5)
.br
Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.
.SH AUTHOR
Independent JPEG Group
.SH BUGS
Arithmetic coding is not supported for legal reasons.
.PP
GIF input files are no longer supported, to avoid the Unisys LZW patent.
Use a Unisys-licensed program if you need to read a GIF file.  (Conversion
of GIF files to JPEG is usually a bad idea anyway.)
.PP
Not all variants of BMP and Targa file formats are supported.
.PP
The
.B \-targa
switch is not a bug, it's a feature.  (It would be a bug if the Targa format
designers had not been clueless.)
.PP
Still not as fast as we'd like.

--- NEW FILE: jmemmgr.c ---
/*
 * jmemmgr.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the JPEG system-independent memory management
 * routines.  This code is usable across a wide variety of machines; most
 * of the system dependencies have been isolated in a separate file.
 * The major functions provided here are:
 *   * pool-based allocation and freeing of memory;
 *   * policy decisions about how to divide available memory among the
 *     virtual arrays;
 *   * control logic for swapping virtual arrays between main memory and
 *     backing storage.
 * The separate system-dependent file provides the actual backing-storage
 * access code, and it contains the policy decision about how much total
 * main memory to use.
[...1079 lines suppressed...]
   * surrounding application may again override this value.
   * If your system doesn't support getenv(), define NO_GETENV to disable
   * this feature.
   */
#ifndef NO_GETENV
  { char * memenv;

    if ((memenv = getenv("JPEGMEM")) != NULL) {
      char ch = 'x';

      if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
	if (ch == 'm' || ch == 'M')
	  max_to_use *= 1000L;
	mem->pub.max_memory_to_use = max_to_use * 1000L;
      }
    }
  }
#endif

}

--- NEW FILE: wrjpgcom.1 ---
.TH WRJPGCOM 1 "15 June 1995"
.SH NAME
wrjpgcom \- insert text comments into a JPEG file
.SH SYNOPSIS
.B wrjpgcom
[
.B \-replace
]
[
.BI \-comment " text"
]
[
.BI \-cfile " name"
]
[
.I filename
]
.LP
.SH DESCRIPTION
.LP
.B wrjpgcom
reads the named JPEG/JFIF file, or the standard input if no file is named,
and generates a new JPEG/JFIF file on standard output.  A comment block is
added to the file.
.PP
The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file.
Although the standard doesn't actually define what COM blocks are for, they
are widely used to hold user-supplied text strings.  This lets you add
annotations, titles, index terms, etc to your JPEG files, and later retrieve
them as text.  COM blocks do not interfere with the image stored in the JPEG
file.  The maximum size of a COM block is 64K, but you can have as many of
them as you like in one JPEG file.
.PP
.B wrjpgcom
adds a COM block, containing text you provide, to a JPEG file.
Ordinarily, the COM block is added after any existing COM blocks; but you
can delete the old COM blocks if you wish.
.SH OPTIONS
Switch names may be abbreviated, and are not case sensitive.
.TP
.B \-replace
Delete any existing COM blocks from the file.
.TP
.BI \-comment " text"
Supply text for new COM block on command line.
.TP
.BI \-cfile " name"
Read text for new COM block from named file.
.PP
If you have only one line of comment text to add, you can provide it on the
command line with
.BR \-comment .
The comment text must be surrounded with quotes so that it is treated as a
single argument.  Longer comments can be read from a text file.
.PP
If you give neither
.B \-comment
nor
.BR \-cfile ,
then
.B wrjpgcom
will read the comment text from standard input.  (In this case an input image
file name MUST be supplied, so that the source JPEG file comes from somewhere
else.)  You can enter multiple lines, up to 64KB worth.  Type an end-of-file
indicator (usually control-D) to terminate the comment text entry.
.PP
.B wrjpgcom
will not add a COM block if the provided comment string is empty.  Therefore
\fB\-replace \-comment ""\fR can be used to delete all COM blocks from a file.
.SH EXAMPLES
.LP
Add a short comment to in.jpg, producing out.jpg:
.IP
.B wrjpgcom \-c
\fI"View of my back yard" in.jpg
.B >
.I out.jpg
.PP
Attach a long comment previously stored in comment.txt:
.IP
.B wrjpgcom
.I in.jpg
.B <
.I comment.txt
.B >
.I out.jpg
.PP
or equivalently
.IP
.B wrjpgcom
.B -cfile
.I comment.txt
.B <
.I in.jpg
.B >
.I out.jpg
.SH SEE ALSO
.BR cjpeg (1),
.BR djpeg (1),
.BR jpegtran (1),
.BR rdjpgcom (1)
.SH AUTHOR
Independent JPEG Group

--- NEW FILE: example.c ---
/*
 * example.c
 *
 * This file illustrates how to use the IJG code as a subroutine library
 * to read or write JPEG image files.  You should look at this code in
 * conjunction with the documentation file libjpeg.doc.
 *
 * This code will not do anything useful as-is, but it may be helpful as a
 * skeleton for constructing routines that call the JPEG library.  
 *
 * We present these routines in the same coding style used in the JPEG code
 * (ANSI function definitions, etc); but you are of course free to code your
 * routines in a different style if you prefer.
 */

#include <stdio.h>

/*
 * Include file for users of JPEG library.
 * You will need to have included system headers that define at least
 * the typedefs FILE and size_t before you can include jpeglib.h.
 * (stdio.h is sufficient on ANSI-conforming systems.)
 * You may also wish to include "jerror.h".
 */

#include "jpeglib.h"

/*
 * <setjmp.h> is used for the optional error recovery mechanism shown in
 * the second part of the example.
 */

#include <setjmp.h>



/******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/

/* This half of the example shows how to feed data into the JPEG compressor.
 * We present a minimal version that does not worry about refinements such
 * as error recovery (the JPEG code will just exit() if it gets an error).
 */


/*
 * IMAGE DATA FORMATS:
 *
 * The standard input image format is a rectangular array of pixels, with
 * each pixel having the same number of "component" values (color channels).
 * Each pixel row is an array of JSAMPLEs (which typically are unsigned chars).
 * If you are working with color data, then the color values for each pixel
 * must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit
 * RGB color.
 *
 * For this example, we'll assume that this data structure matches the way
 * our application has stored the image in memory, so we can just pass a
 * pointer to our image buffer.  In particular, let's say that the image is
 * RGB color and is described by:
 */

extern JSAMPLE * image_buffer;	/* Points to large array of R,G,B-order data */
extern int image_height;	/* Number of rows in image */
extern int image_width;		/* Number of columns in image */


/*
 * Sample routine for JPEG compression.  We assume that the target file name
 * and a compression quality factor are passed in.
 */

GLOBAL(void)
write_JPEG_file (char * filename, int quality)
{
  /* This struct contains the JPEG compression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   * It is possible to have several such structures, representing multiple
   * compression/decompression processes, in existence at once.  We refer
   * to any one struct (and its associated working data) as a "JPEG object".
   */
  struct jpeg_compress_struct cinfo;
  /* This struct represents a JPEG error handler.  It is declared separately
   * because applications often want to supply a specialized error handler
   * (see the second half of this file for an example).  But here we just
   * take the easy way out and use the standard error handler, which will
   * print a message on stderr and call exit() if compression fails.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  struct jpeg_error_mgr jerr;
  /* More stuff */
  FILE * outfile;		/* target file */
  JSAMPROW row_pointer[1];	/* pointer to JSAMPLE row[s] */
  int row_stride;		/* physical row width in image buffer */

  /* Step 1: allocate and initialize JPEG compression object */

  /* We have to set up the error handler first, in case the initialization
   * step fails.  (Unlikely, but it could happen if you are out of memory.)
   * This routine fills in the contents of struct jerr, and returns jerr's
   * address which we place into the link field in cinfo.
   */
  cinfo.err = jpeg_std_error(&jerr);
  /* Now we can initialize the JPEG compression object. */
  jpeg_create_compress(&cinfo);

  /* Step 2: specify data destination (eg, a file) */
  /* Note: steps 2 and 3 can be done in either order. */

  /* Here we use the library-supplied code to send compressed data to a
   * stdio stream.  You can also write your own code to do something else.
   * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
   * requires it in order to write binary files.
   */
  if ((outfile = fopen(filename, "wb")) == NULL) {
    fprintf(stderr, "can't open %s\n", filename);
    exit(1);
  }
  jpeg_stdio_dest(&cinfo, outfile);

  /* Step 3: set parameters for compression */

  /* First we supply a description of the input image.
   * Four fields of the cinfo struct must be filled in:
   */
  cinfo.image_width = image_width; 	/* image width and height, in pixels */
  cinfo.image_height = image_height;
  cinfo.input_components = 3;		/* # of color components per pixel */
  cinfo.in_color_space = JCS_RGB; 	/* colorspace of input image */
  /* Now use the library's routine to set default compression parameters.
   * (You must set at least cinfo.in_color_space before calling this,
   * since the defaults depend on the source color space.)
   */
  jpeg_set_defaults(&cinfo);
  /* Now you can set any non-default parameters you wish to.
   * Here we just illustrate the use of quality (quantization table) scaling:
   */
  jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);

  /* Step 4: Start compressor */

  /* TRUE ensures that we will write a complete interchange-JPEG file.
   * Pass TRUE unless you are very sure of what you're doing.
   */
  jpeg_start_compress(&cinfo, TRUE);

  /* Step 5: while (scan lines remain to be written) */
  /*           jpeg_write_scanlines(...); */

  /* Here we use the library's state variable cinfo.next_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   * To keep things simple, we pass one scanline per call; you can pass
   * more if you wish, though.
   */
  row_stride = image_width * 3;	/* JSAMPLEs per row in image_buffer */

  while (cinfo.next_scanline < cinfo.image_height) {
    /* jpeg_write_scanlines expects an array of pointers to scanlines.
     * Here the array is only one element long, but you could pass
     * more than one scanline at a time if that's more convenient.
     */
    row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
    (void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
  }

  /* Step 6: Finish compression */

  jpeg_finish_compress(&cinfo);
  /* After finish_compress, we can close the output file. */
  fclose(outfile);

  /* Step 7: release JPEG compression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_compress(&cinfo);

  /* And we're done! */
}


/*
 * SOME FINE POINTS:
 *
 * In the above loop, we ignored the return value of jpeg_write_scanlines,
 * which is the number of scanlines actually written.  We could get away
 * with this because we were only relying on the value of cinfo.next_scanline,
 * which will be incremented correctly.  If you maintain additional loop
 * variables then you should be careful to increment them properly.
 * Actually, for output to a stdio stream you needn't worry, because
 * then jpeg_write_scanlines will write all the lines passed (or else exit
 * with a fatal error).  Partial writes can only occur if you use a data
 * destination module that can demand suspension of the compressor.
 * (If you don't know what that's for, you don't need it.)
 *
 * If the compressor requires full-image buffers (for entropy-coding
 * optimization or a multi-scan JPEG file), it will create temporary
 * files for anything that doesn't fit within the maximum-memory setting.
 * (Note that temp files are NOT needed if you use the default parameters.)
 * On some systems you may need to set up a signal handler to ensure that
 * temporary files are deleted if the program is interrupted.  See libjpeg.doc.
 *
 * Scanlines MUST be supplied in top-to-bottom order if you want your JPEG
 * files to be compatible with everyone else's.  If you cannot readily read
 * your data in that order, you'll need an intermediate array to hold the
 * image.  See rdtarga.c or rdbmp.c for examples of handling bottom-to-top
 * source data using the JPEG code's internal virtual-array mechanisms.
 */



/******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/

/* This half of the example shows how to read data from the JPEG decompressor.
 * It's a bit more refined than the above, in that we show:
 *   (a) how to modify the JPEG library's standard error-reporting behavior;
 *   (b) how to allocate workspace using the library's memory manager.
 *
 * Just to make this example a little different from the first one, we'll
 * assume that we do not intend to put the whole image into an in-memory
 * buffer, but to send it line-by-line someplace else.  We need a one-
 * scanline-high JSAMPLE array as a work buffer, and we will let the JPEG
 * memory manager allocate it for us.  This approach is actually quite useful
 * because we don't need to remember to deallocate the buffer separately: it
 * will go away automatically when the JPEG object is cleaned up.
 */


/*
 * ERROR HANDLING:
 *
 * The JPEG library's standard error handler (jerror.c) is divided into
 * several "methods" which you can override individually.  This lets you
 * adjust the behavior without duplicating a lot of code, which you might
 * have to update with each future release.
 *
 * Our example here shows how to override the "error_exit" method so that
 * control is returned to the library's caller when a fatal error occurs,
 * rather than calling exit() as the standard error_exit method does.
 *
 * We use C's setjmp/longjmp facility to return control.  This means that the
 * routine which calls the JPEG library must first execute a setjmp() call to
 * establish the return point.  We want the replacement error_exit to do a
 * longjmp().  But we need to make the setjmp buffer accessible to the
 * error_exit routine.  To do this, we make a private extension of the
 * standard JPEG error handler object.  (If we were using C++, we'd say we
 * were making a subclass of the regular error handler.)
 *
 * Here's the extended error handler struct:
 */

struct my_error_mgr {
  struct jpeg_error_mgr pub;	/* "public" fields */

  jmp_buf setjmp_buffer;	/* for return to caller */
};

typedef struct my_error_mgr * my_error_ptr;

/*
 * Here's the routine that will replace the standard error_exit method:
 */

METHODDEF(void)
my_error_exit (j_common_ptr cinfo)
{
  /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
  my_error_ptr myerr = (my_error_ptr) cinfo->err;

  /* Always display the message. */
  /* We could postpone this until after returning, if we chose. */
  (*cinfo->err->output_message) (cinfo);

  /* Return control to the setjmp point */
  longjmp(myerr->setjmp_buffer, 1);
}


/*
 * Sample routine for JPEG decompression.  We assume that the source file name
 * is passed in.  We want to return 1 on success, 0 on error.
 */


GLOBAL(int)
read_JPEG_file (char * filename)
{
  /* This struct contains the JPEG decompression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   */
  struct jpeg_decompress_struct cinfo;
  /* We use our private extension JPEG error handler.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  struct my_error_mgr jerr;
  /* More stuff */
  FILE * infile;		/* source file */
  JSAMPARRAY buffer;		/* Output row buffer */
  int row_stride;		/* physical row width in output buffer */

  /* In this example we want to open the input file before doing anything else,
   * so that the setjmp() error recovery below can assume the file is open.
   * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
   * requires it in order to read binary files.
   */

  if ((infile = fopen(filename, "rb")) == NULL) {
    fprintf(stderr, "can't open %s\n", filename);
    return 0;
  }

  /* Step 1: allocate and initialize JPEG decompression object */

  /* We set up the normal JPEG error routines, then override error_exit. */
  cinfo.err = jpeg_std_error(&jerr.pub);
  jerr.pub.error_exit = my_error_exit;
  /* Establish the setjmp return context for my_error_exit to use. */
  if (setjmp(jerr.setjmp_buffer)) {
    /* If we get here, the JPEG code has signaled an error.
     * We need to clean up the JPEG object, close the input file, and return.
     */
    jpeg_destroy_decompress(&cinfo);
    fclose(infile);
    return 0;
  }
  /* Now we can initialize the JPEG decompression object. */
  jpeg_create_decompress(&cinfo);

  /* Step 2: specify data source (eg, a file) */

  jpeg_stdio_src(&cinfo, infile);

  /* Step 3: read file parameters with jpeg_read_header() */

  (void) jpeg_read_header(&cinfo, TRUE);
  /* We can ignore the return value from jpeg_read_header since
   *   (a) suspension is not possible with the stdio data source, and
   *   (b) we passed TRUE to reject a tables-only JPEG file as an error.
   * See libjpeg.doc for more info.
   */

  /* Step 4: set parameters for decompression */

  /* In this example, we don't need to change any of the defaults set by
   * jpeg_read_header(), so we do nothing here.
   */

  /* Step 5: Start decompressor */

  (void) jpeg_start_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* We may need to do some setup of our own at this point before reading
   * the data.  After jpeg_start_decompress() we have the correct scaled
   * output image dimensions available, as well as the output colormap
   * if we asked for color quantization.
   * In this example, we need to make an output work buffer of the right size.
   */ 
  /* JSAMPLEs per row in output buffer */
  row_stride = cinfo.output_width * cinfo.output_components;
  /* Make a one-row-high sample array that will go away when done with image */
  buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

  /* Step 6: while (scan lines remain to be read) */
  /*           jpeg_read_scanlines(...); */

  /* Here we use the library's state variable cinfo.output_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   */
  while (cinfo.output_scanline < cinfo.output_height) {
    /* jpeg_read_scanlines expects an array of pointers to scanlines.
     * Here the array is only one element long, but you could ask for
     * more than one scanline at a time if that's more convenient.
     */
    (void) jpeg_read_scanlines(&cinfo, buffer, 1);
    /* Assume put_scanline_someplace wants a pointer and sample count. */
    put_scanline_someplace(buffer[0], row_stride);
  }

  /* Step 7: Finish decompression */

  (void) jpeg_finish_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* Step 8: Release JPEG decompression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_decompress(&cinfo);

  /* After finish_decompress, we can close the input file.
   * Here we postpone it until after no more JPEG errors are possible,
   * so as to simplify the setjmp error logic above.  (Actually, I don't
   * think that jpeg_destroy can do an error exit, but why assume anything...)
   */
  fclose(infile);

  /* At this point you may want to check to see whether any corrupt-data
   * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
   */

  /* And we're done! */
  return 1;
}


/*
 * SOME FINE POINTS:
 *
 * In the above code, we ignored the return value of jpeg_read_scanlines,
 * which is the number of scanlines actually read.  We could get away with
 * this because we asked for only one line at a time and we weren't using
 * a suspending data source.  See libjpeg.doc for more info.
 *
 * We cheated a bit by calling alloc_sarray() after jpeg_start_decompress();
 * we should have done it beforehand to ensure that the space would be
 * counted against the JPEG max_memory setting.  In some systems the above
 * code would risk an out-of-memory error.  However, in general we don't
 * know the output image dimensions before jpeg_start_decompress(), unless we
 * call jpeg_calc_output_dimensions().  See libjpeg.doc for more about this.
 *
 * Scanlines are returned in the same order as they appear in the JPEG file,
 * which is standardly top-to-bottom.  If you must emit data bottom-to-top,
 * you can use one of the virtual arrays provided by the JPEG memory manager
 * to invert the data.  See wrbmp.c for an example.
 *
 * As with compression, some operating modes may require temporary files.
 * On some systems you may need to set up a signal handler to ensure that
 * temporary files are deleted if the program is interrupted.  See libjpeg.doc.
 */

--- NEW FILE: README ---
The Independent JPEG Group's JPEG software
==========================================

README for release 6b of 27-Mar-1998
====================================

This distribution contains the sixth public release of the Independent JPEG
Group's free JPEG software.  You are welcome to redistribute this software and
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below.

Serious users of this software (particularly those incorporating it into
larger programs) should contact IJG at jpeg-info at uunet.uu.net to be added to
our electronic mailing list.  Mailing list members are notified of updates
and have a chance to participate in technical discussions, etc.

This software is the work of Tom Lane, Philip Gladstone, Jim Boucher,
Lee Crocker, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi,
Guido Vollbeding, Ge' Weijers, and other members of the Independent JPEG
Group.

IJG is not affiliated with the official ISO JPEG standards committee.


DOCUMENTATION ROADMAP
=====================

This file contains the following sections:

OVERVIEW            General description of JPEG and the IJG software.
LEGAL ISSUES        Copyright, lack of warranty, terms of distribution.
REFERENCES          Where to learn more about JPEG.
ARCHIVE LOCATIONS   Where to find newer versions of this software.
RELATED SOFTWARE    Other stuff you should get.
FILE FORMAT WARS    Software *not* to get.
TO DO               Plans for future IJG releases.

Other documentation files in the distribution are:

User documentation:
  install.doc       How to configure and install the IJG software.
  usage.doc         Usage instructions for cjpeg, djpeg, jpegtran,
                    rdjpgcom, and wrjpgcom.
  *.1               Unix-style man pages for programs (same info as usage.doc).
  wizard.doc        Advanced usage instructions for JPEG wizards only.
  change.log        Version-to-version change highlights.
Programmer and internal documentation:
  libjpeg.doc       How to use the JPEG library in your own programs.
  example.c         Sample code for calling the JPEG library.
  structure.doc     Overview of the JPEG library's internal structure.
  filelist.doc      Road map of IJG files.
  coderules.doc     Coding style rules --- please read if you contribute code.

Please read at least the files install.doc and usage.doc.  Useful information
can also be found in the JPEG FAQ (Frequently Asked Questions) article.  See
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article.

If you want to understand how the JPEG code works, we suggest reading one or
more of the REFERENCES, then looking at the documentation files (in roughly
the order listed) before diving into the code.


OVERVIEW
========

This package contains C software to implement JPEG image compression and
decompression.  JPEG (pronounced "jay-peg") is a standardized compression
method for full-color and gray-scale images.  JPEG is intended for compressing
"real-world" scenes; line drawings, cartoons and other non-realistic images
are not its strong suit.  JPEG is lossy, meaning that the output image is not
exactly identical to the input image.  Hence you must not use JPEG if you
have to have identical output bits.  However, on typical photographic images,
very good compression levels can be obtained with no visible change, and
remarkably high compression levels are possible if you can tolerate a
low-quality image.  For more details, see the references, or just experiment
with various compression settings.

This software implements JPEG baseline, extended-sequential, and progressive
compression processes.  Provision is made for supporting all variants of these
processes, although some uncommon parameter settings aren't implemented yet.
For legal reasons, we are not distributing code for the arithmetic-coding
variants of JPEG; see LEGAL ISSUES.  We have made no provision for supporting
the hierarchical or lossless processes defined in the standard.

We provide a set of library routines for reading and writing JPEG image files,
plus two sample applications "cjpeg" and "djpeg", which use the library to
perform conversion between JPEG and some other popular image file formats.
The library is intended to be reused in other applications.

In order to support file conversion and viewing software, we have included
considerable functionality beyond the bare JPEG coding/decoding capability;
for example, the color quantization modules are not strictly part of JPEG
decoding, but they are essential for output to colormapped file formats or
colormapped displays.  These extra functions can be compiled out of the
library if not required for a particular application.  We have also included
"jpegtran", a utility for lossless transcoding between different JPEG
processes, and "rdjpgcom" and "wrjpgcom", two simple applications for
inserting and extracting textual comments in JFIF files.

The emphasis in designing this software has been on achieving portability and
flexibility, while also making it fast enough to be useful.  In particular,
the software is not intended to be read as a tutorial on JPEG.  (See the
REFERENCES section for introductory material.)  Rather, it is intended to
be reliable, portable, industrial-strength code.  We do not claim to have
achieved that goal in every aspect of the software, but we strive for it.

We welcome the use of this software as a component of commercial products.
No royalty is required, but we do ask for an acknowledgement in product
documentation, as described under LEGAL ISSUES.


LEGAL ISSUES
============

In plain English:

1. We don't promise that this software works.  (But if you find any bugs,
   please let us know!)
2. You can use this software for whatever you want.  You don't have to pay us.
3. You may not pretend that you wrote this software.  If you use it in a
   program, you must acknowledge somewhere in your documentation that
   you've used the IJG code.

In legalese:

The authors make NO WARRANTY or representation, either express or implied,
with respect to this software, its quality, accuracy, merchantability, or
fitness for a particular purpose.  This software is provided "AS IS", and you,
its user, assume the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-1998, Thomas G. Lane.
All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this
software (or portions thereof) for any purpose, without fee, subject to these
conditions:
(1) If any part of the source code for this software is distributed, then this
README file must be included, with this copyright and no-warranty notice
unaltered; and any additions, deletions, or changes to the original files
must be clearly indicated in accompanying documentation.
(2) If only executable code is distributed, then the accompanying
documentation must state that "this software is based in part on the work of
the Independent JPEG Group".
(3) Permission for use of this software is granted only if the user accepts
full responsibility for any undesirable consequences; the authors accept
NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code,
not just to the unmodified library.  If you use our work, you ought to
acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name
in advertising or publicity relating to this software or products derived from
it.  This software may be referred to only as "the Independent JPEG Group's
software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are
assumed by the product vendor.


ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,
sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.
ansi2knr.c is NOT covered by the above copyright and conditions, but instead
by the usual distribution terms of the Free Software Foundation; principally,
that you must include source code if you redistribute it.  (See the file
ansi2knr.c for full details.)  However, since ansi2knr.c is not needed as part
of any program generated from the IJG code, this does not limit you more than
the foregoing paragraphs do.

The Unix configuration script "configure" was produced with GNU Autoconf.
It is copyright by the Free Software Foundation but is freely distributable.
The same holds for its supporting scripts (config.guess, config.sub,
ltconfig, ltmain.sh).  Another support script, install-sh, is copyright
by M.I.T. but is also freely distributable.

It appears that the arithmetic coding option of the JPEG spec is covered by
patents owned by IBM, AT&T, and Mitsubishi.  Hence arithmetic coding cannot
legally be used without obtaining one or more licenses.  For this reason,
support for arithmetic coding has been removed from the free JPEG software.
(Since arithmetic coding provides only a marginal gain over the unpatented
Huffman mode, it is unlikely that very many implementations will support it.)
So far as we are aware, there are no patent restrictions on the remaining
code.

The IJG distribution formerly included code to read and write GIF files.
To avoid entanglement with the Unisys LZW patent, GIF reading support has
been removed altogether, and the GIF writer has been simplified to produce
"uncompressed GIFs".  This technique does not use the LZW algorithm; the
resulting GIF files are larger than usual, but are readable by all standard
GIF decoders.

We are required to state that
    "The Graphics Interchange Format(c) is the Copyright property of
    CompuServe Incorporated.  GIF(sm) is a Service Mark property of
    CompuServe Incorporated."


REFERENCES
==========

We highly recommend reading one or more of these references before trying to
understand the innards of the JPEG software.

The best short technical introduction to the JPEG compression algorithm is
	Wallace, Gregory K.  "The JPEG Still Picture Compression Standard",
	Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44.
(Adjacent articles in that issue discuss MPEG motion picture compression,
applications of JPEG, and related topics.)  If you don't have the CACM issue
handy, a PostScript file containing a revised version of Wallace's article is
available at ftp://ftp.uu.net/graphics/jpeg/wallace.ps.gz.  The file (actually
a preprint for an article that appeared in IEEE Trans. Consumer Electronics)
omits the sample images that appeared in CACM, but it includes corrections
and some added material.  Note: the Wallace article is copyright ACM and IEEE,
and it may not be used for commercial purposes.

A somewhat less technical, more leisurely introduction to JPEG can be found in
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1.  This book provides
good explanations and example C code for a multitude of compression methods
including JPEG.  It is an excellent source if you are comfortable reading C
code but don't know much about data compression in general.  The book's JPEG
sample code is far from industrial-strength, but when you are ready to look
at a full implementation, you've got one here...

The best full description of JPEG is the textbook "JPEG Still Image Data
Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published
by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1.  Price US$59.95, 638 pp.
The book includes the complete text of the ISO JPEG standards (DIS 10918-1
and draft DIS 10918-2).  This is by far the most complete exposition of JPEG
in existence, and we highly recommend it.

The JPEG standard itself is not available electronically; you must order a
paper copy through ISO or ITU.  (Unless you feel a need to own a certified
official copy, we recommend buying the Pennebaker and Mitchell book instead;
it's much cheaper and includes a great deal of useful explanatory material.)
In the USA, copies of the standard may be ordered from ANSI Sales at (212)
642-4900, or from Global Engineering Documents at (800) 854-7179.  (ANSI
doesn't take credit card orders, but Global does.)  It's not cheap: as of
1992, ANSI was charging $95 for Part 1 and $47 for Part 2, plus 7%
shipping/handling.  The standard is divided into two parts, Part 1 being the
actual specification, while Part 2 covers compliance testing methods.  Part 1
is titled "Digital Compression and Coding of Continuous-tone Still Images,
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS
10918-1, ITU-T T.81.  Part 2 is titled "Digital Compression and Coding of
Continuous-tone Still Images, Part 2: Compliance testing" and has document
numbers ISO/IEC IS 10918-2, ITU-T T.83.

Some extensions to the original JPEG standard are defined in JPEG Part 3,
a newer ISO standard numbered ISO/IEC IS 10918-3 and ITU-T T.84.  IJG
currently does not support any Part 3 extensions.

The JPEG standard does not specify all details of an interchangeable file
format.  For the omitted details we follow the "JFIF" conventions, revision
1.02.  A copy of the JFIF spec is available from:
	Literature Department
	C-Cube Microsystems, Inc.
	1778 McCarthy Blvd.
	Milpitas, CA 95035
	phone (408) 944-6300,  fax (408) 944-6314
A PostScript version of this document is available by FTP at
ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.  There is also a plain text
version at ftp://ftp.uu.net/graphics/jpeg/jfif.txt.gz, but it is missing
the figures.

The TIFF 6.0 file format specification can be obtained by FTP from
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz.  The JPEG incorporation scheme
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
(Compression tag 7).  Copies of this Note can be obtained from ftp.sgi.com or
from ftp://ftp.uu.net/graphics/jpeg/.  It is expected that the next revision
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
uses our library to implement TIFF/JPEG per the Note.  libtiff is available
from ftp://ftp.sgi.com/graphics/tiff/.


ARCHIVE LOCATIONS
=================

The "official" archive site for this software is ftp.uu.net (Internet
address 192.48.96.9).  The most recent released version can always be found
there in directory graphics/jpeg.  This particular version will be archived
as ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6b.tar.gz.  If you don't have
direct Internet access, UUNET's archives are also available via UUCP; contact
help at uunet.uu.net for information on retrieving files that way.

Numerous Internet sites maintain copies of the UUNET files.  However, only
ftp.uu.net is guaranteed to have the latest official version.

You can also obtain this software in DOS-compatible "zip" archive format from
the SimTel archives (ftp://ftp.simtel.net/pub/simtelnet/msdos/graphics/), or
on CompuServe in the Graphics Support forum (GO CIS:GRAPHSUP), library 12
"JPEG Tools".  Again, these versions may sometimes lag behind the ftp.uu.net
release.

The JPEG FAQ (Frequently Asked Questions) article is a useful source of
general information about JPEG.  It is updated constantly and therefore is
not included in this distribution.  The FAQ is posted every two weeks to
Usenet newsgroups comp.graphics.misc, news.answers, and other groups.
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
and other news.answers archive sites, including the official news.answers
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
If you don't have Web or FTP access, send e-mail to mail-server at rtfm.mit.edu
with body
	send usenet/news.answers/jpeg-faq/part1
	send usenet/news.answers/jpeg-faq/part2


RELATED SOFTWARE
================

Numerous viewing and image manipulation programs now support JPEG.  (Quite a
few of them use this library to do so.)  The JPEG FAQ described above lists
some of the more popular free and shareware viewers, and tells where to
obtain them on Internet.

If you are on a Unix machine, we highly recommend Jef Poskanzer's free
PBMPLUS software, which provides many useful operations on PPM-format image
files.  In particular, it can convert PPM images to and from a wide range of
other formats, thus making cjpeg/djpeg considerably more useful.  The latest
version is distributed by the NetPBM group, and is available from numerous
sites, notably ftp://wuarchive.wustl.edu/graphics/graphics/packages/NetPBM/.
Unfortunately PBMPLUS/NETPBM is not nearly as portable as the IJG software is;
you are likely to have difficulty making it work on any non-Unix machine.

A different free JPEG implementation, written by the PVRG group at Stanford,
is available from ftp://havefun.stanford.edu/pub/jpeg/.  This program
is designed for research and experimentation rather than production use;
it is slower, harder to use, and less portable than the IJG code, but it
is easier to read and modify.  Also, the PVRG code supports lossless JPEG,
which we do not.  (On the other hand, it doesn't do progressive JPEG.)


FILE FORMAT WARS
================

Some JPEG programs produce files that are not compatible with our library.
The root of the problem is that the ISO JPEG committee failed to specify a
concrete file format.  Some vendors "filled in the blanks" on their own,
creating proprietary formats that no one else could read.  (For example, none
of the early commercial JPEG implementations for the Macintosh were able to
exchange compressed files.)

The file format we have adopted is called JFIF (see REFERENCES).  This format
has been agreed to by a number of major commercial JPEG vendors, and it has
become the de facto standard.  JFIF is a minimal or "low end" representation.
We recommend the use of TIFF/JPEG (TIFF revision 6.0 as modified by TIFF
Technical Note #2) for "high end" applications that need to record a lot of
additional data about an image.  TIFF/JPEG is fairly new and not yet widely
supported, unfortunately.

The upcoming JPEG Part 3 standard defines a file format called SPIFF.
SPIFF is interoperable with JFIF, in the sense that most JFIF decoders should
be able to read the most common variant of SPIFF.  SPIFF has some technical
advantages over JFIF, but its major claim to fame is simply that it is an
official standard rather than an informal one.  At this point it is unclear
whether SPIFF will supersede JFIF or whether JFIF will remain the de-facto
standard.  IJG intends to support SPIFF once the standard is frozen, but we
have not decided whether it should become our default output format or not.
(In any case, our decoder will remain capable of reading JFIF indefinitely.)

Various proprietary file formats incorporating JPEG compression also exist.
We have little or no sympathy for the existence of these formats.  Indeed,
one of the original reasons for developing this free software was to help
force convergence on common, open format standards for JPEG files.  Don't
use a proprietary file format!


TO DO
=====

The major thrust for v7 will probably be improvement of visual quality.
The current method for scaling the quantization tables is known not to be
very good at low Q values.  We also intend to investigate block boundary
smoothing, "poor man's variable quantization", and other means of improving
quality-vs-file-size performance without sacrificing compatibility.

In future versions, we are considering supporting some of the upcoming JPEG
Part 3 extensions --- principally, variable quantization and the SPIFF file
format.

As always, speeding things up is of great interest.

Please send bug reports, offers of help, etc. to jpeg-info at uunet.uu.net.

--- NEW FILE: jconfig.wat ---
/* jconfig.wat --- jconfig.h for Watcom C/C++ on MS-DOS or OS/2. */
/* see jconfig.doc for explanations */

#define HAVE_PROTOTYPES
#define HAVE_UNSIGNED_CHAR
#define HAVE_UNSIGNED_SHORT
/* #define void char */
/* #define const */
#define CHAR_IS_UNSIGNED
#define HAVE_STDDEF_H
#define HAVE_STDLIB_H
#undef NEED_BSD_STRINGS
#undef NEED_SYS_TYPES_H
#undef NEED_FAR_POINTERS	/* Watcom uses flat 32-bit addressing */
#undef NEED_SHORT_EXTERNAL_NAMES
#undef INCOMPLETE_TYPES_BROKEN

#ifdef JPEG_INTERNALS

#undef RIGHT_SHIFT_IS_UNSIGNED

#endif /* JPEG_INTERNALS */

#ifdef JPEG_CJPEG_DJPEG

#define BMP_SUPPORTED		/* BMP image file format */
#define GIF_SUPPORTED		/* GIF image file format */
#define PPM_SUPPORTED		/* PBMPLUS PPM/PGM image file format */
#undef RLE_SUPPORTED		/* Utah RLE image file format */
#define TARGA_SUPPORTED		/* Targa image file format */

#undef TWO_FILE_COMMANDLINE	/* optional */
#define USE_SETMODE		/* Needed to make one-file style work in Watcom */
#undef NEED_SIGNAL_CATCHER	/* Define this if you use jmemname.c */
#undef DONT_USE_B_MODE
#undef PROGRESS_REPORT		/* optional */

#endif /* JPEG_CJPEG_DJPEG */

--- NEW FILE: jidctred.c ---
/*
 * jidctred.c
 *
 * Copyright (C) 1994-1998, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains inverse-DCT routines that produce reduced-size output:
 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
 *
 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
 * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
 * with an 8-to-4 step that produces the four averages of two adjacent outputs
 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
 * These steps were derived by computing the corresponding values at the end
 * of the normal LL&M code, then simplifying as much as possible.
 *
 * 1x1 is trivial: just take the DC coefficient divided by 8.
 *
 * See jidctint.c for additional comments.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef IDCT_SCALING_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/* Scaling is the same as in jidctint.c. */

#if BITS_IN_JSAMPLE == 8
#define CONST_BITS  13
#define PASS1_BITS  2
#else
#define CONST_BITS  13
#define PASS1_BITS  1		/* lose a little precision to avoid overflow */
#endif

/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 * causing a lot of useless floating-point operations at run time.
 * To get around this we use the following pre-calculated constants.
 * If you change CONST_BITS you may want to add appropriate values.
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 */

#if CONST_BITS == 13
#define FIX_0_211164243  ((INT32)  1730)	/* FIX(0.211164243) */
#define FIX_0_509795579  ((INT32)  4176)	/* FIX(0.509795579) */
#define FIX_0_601344887  ((INT32)  4926)	/* FIX(0.601344887) */
#define FIX_0_720959822  ((INT32)  5906)	/* FIX(0.720959822) */
#define FIX_0_765366865  ((INT32)  6270)	/* FIX(0.765366865) */
#define FIX_0_850430095  ((INT32)  6967)	/* FIX(0.850430095) */
#define FIX_0_899976223  ((INT32)  7373)	/* FIX(0.899976223) */
#define FIX_1_061594337  ((INT32)  8697)	/* FIX(1.061594337) */
#define FIX_1_272758580  ((INT32)  10426)	/* FIX(1.272758580) */
#define FIX_1_451774981  ((INT32)  11893)	/* FIX(1.451774981) */
#define FIX_1_847759065  ((INT32)  15137)	/* FIX(1.847759065) */
#define FIX_2_172734803  ((INT32)  17799)	/* FIX(2.172734803) */
#define FIX_2_562915447  ((INT32)  20995)	/* FIX(2.562915447) */
#define FIX_3_624509785  ((INT32)  29692)	/* FIX(3.624509785) */
#else
#define FIX_0_211164243  FIX(0.211164243)
#define FIX_0_509795579  FIX(0.509795579)
#define FIX_0_601344887  FIX(0.601344887)
#define FIX_0_720959822  FIX(0.720959822)
#define FIX_0_765366865  FIX(0.765366865)
#define FIX_0_850430095  FIX(0.850430095)
#define FIX_0_899976223  FIX(0.899976223)
#define FIX_1_061594337  FIX(1.061594337)
#define FIX_1_272758580  FIX(1.272758580)
#define FIX_1_451774981  FIX(1.451774981)
#define FIX_1_847759065  FIX(1.847759065)
#define FIX_2_172734803  FIX(2.172734803)
#define FIX_2_562915447  FIX(2.562915447)
#define FIX_3_624509785  FIX(3.624509785)
#endif


/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 * For 8-bit samples with the recommended scaling, all the variable
 * and constant values involved are no more than 16 bits wide, so a
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 * For 12-bit samples, a full 32-bit multiplication will be needed.
 */

#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const)  ((var) * (const))
#endif


/* Dequantize a coefficient by multiplying it by the multiplier-table
 * entry; produce an int result.  In this module, both inputs and result
 * are 16 bits or less, so either int or short multiply will work.
 */

#define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))


/*
 * Perform dequantization and inverse DCT on one block of coefficients,
 * producing a reduced-size 4x4 output block.
 */

GLOBAL(void)
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
	       JCOEFPTR coef_block,
	       JSAMPARRAY output_buf, JDIMENSION output_col)
{
  INT32 tmp0, tmp2, tmp10, tmp12;
  INT32 z1, z2, z3, z4;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE*4];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    /* Don't bother to process column 4, because second pass won't use it */
    if (ctr == DCTSIZE-4)
      continue;
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
	inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero; we need not examine term 4 for 4x4 output */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      wsptr[DCTSIZE*2] = dcval;
      wsptr[DCTSIZE*3] = dcval;
      
      continue;
    }
    
    /* Even part */
    
    tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp0 <<= (CONST_BITS+1);
    
    z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);

    tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
    
    tmp10 = tmp0 + tmp2;
    tmp12 = tmp0 - tmp2;
    
    /* Odd part */
    
    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */

    /* Final output stage */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
    wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
  }
  
  /* Pass 2: process 4 rows from work array, store into output array. */

  wsptr = workspace;
  for (ctr = 0; ctr < 4; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* It's not clear whether a zero row test is worthwhile here ... */

#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      outptr[2] = dcval;
      outptr[3] = dcval;
      
      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part */
    
    tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
    
    tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
	 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
    
    tmp10 = tmp0 + tmp2;
    tmp12 = tmp0 - tmp2;
    
    /* Odd part */
    
    z1 = (INT32) wsptr[7];
    z2 = (INT32) wsptr[5];
    z3 = (INT32) wsptr[3];
    z4 = (INT32) wsptr[1];
    
    tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
	 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
	 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
	 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    
    tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
	 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
	 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
	 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */

    /* Final output stage */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
					  CONST_BITS+PASS1_BITS+3+1)
			    & RANGE_MASK];
    outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
					  CONST_BITS+PASS1_BITS+3+1)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
					  CONST_BITS+PASS1_BITS+3+1)
			    & RANGE_MASK];
    outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
					  CONST_BITS+PASS1_BITS+3+1)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}


/*
 * Perform dequantization and inverse DCT on one block of coefficients,
 * producing a reduced-size 2x2 output block.
 */

GLOBAL(void)
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
	       JCOEFPTR coef_block,
	       JSAMPARRAY output_buf, JDIMENSION output_col)
{
  INT32 tmp0, tmp10, z1;
  JCOEFPTR inptr;
  ISLOW_MULT_TYPE * quantptr;
  int * wsptr;
  JSAMPROW outptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  int ctr;
  int workspace[DCTSIZE*2];	/* buffers data between passes */
  SHIFT_TEMPS

  /* Pass 1: process columns from input, store into work array. */

  inptr = coef_block;
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  wsptr = workspace;
  for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    /* Don't bother to process columns 2,4,6 */
    if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
      continue;
    if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
      /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
      int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
      
      wsptr[DCTSIZE*0] = dcval;
      wsptr[DCTSIZE*1] = dcval;
      
      continue;
    }
    
    /* Even part */
    
    z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    tmp10 = z1 << (CONST_BITS+2);
    
    /* Odd part */

    z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */

    /* Final output stage */
    
    wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
    wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
  }
  
  /* Pass 2: process 2 rows from work array, store into output array. */

  wsptr = workspace;
  for (ctr = 0; ctr < 2; ctr++) {
    outptr = output_buf[ctr] + output_col;
    /* It's not clear whether a zero row test is worthwhile here ... */

#ifndef NO_ZERO_ROW_TEST
    if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
      /* AC terms all zero */
      JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
				  & RANGE_MASK];
      
      outptr[0] = dcval;
      outptr[1] = dcval;
      
      wsptr += DCTSIZE;		/* advance pointer to next row */
      continue;
    }
#endif
    
    /* Even part */
    
    tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
    
    /* Odd part */

    tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
	 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
	 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
	 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */

    /* Final output stage */
    
    outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
					  CONST_BITS+PASS1_BITS+3+2)
			    & RANGE_MASK];
    outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
					  CONST_BITS+PASS1_BITS+3+2)
			    & RANGE_MASK];
    
    wsptr += DCTSIZE;		/* advance pointer to next row */
  }
}


/*
 * Perform dequantization and inverse DCT on one block of coefficients,
 * producing a reduced-size 1x1 output block.
 */

GLOBAL(void)
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
	       JCOEFPTR coef_block,
	       JSAMPARRAY output_buf, JDIMENSION output_col)
{
  int dcval;
  ISLOW_MULT_TYPE * quantptr;
  JSAMPLE *range_limit = IDCT_range_limit(cinfo);
  SHIFT_TEMPS

  /* We hardly need an inverse DCT routine for this: just take the
   * average pixel value, which is one-eighth of the DC coefficient.
   */
  quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
  dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
  dcval = (int) DESCALE((INT32) dcval, 3);

  output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
}

#endif /* IDCT_SCALING_SUPPORTED */

--- NEW FILE: ansi2knr.c ---
/* ansi2knr.c */
/* Convert ANSI C function definitions to K&R ("traditional C") syntax */

/*
ansi2knr is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY.  No author or distributor accepts responsibility to anyone for the
consequences of using it or for whether it serves any particular purpose or
works at all, unless he says so in writing.  Refer to the GNU General Public
License (the "GPL") for full details.

Everyone is granted permission to copy, modify and redistribute ansi2knr,
but only under the conditions described in the GPL.  A copy of this license
is supposed to have been given to you along with ansi2knr so you can know
your rights and responsibilities.  It should be in a file named COPYLEFT.
[In the IJG distribution, the GPL appears below, not in a separate file.]
Among other things, the copyright notice and this notice must be preserved
on all copies.

We explicitly state here what we believe is already implied by the GPL: if
the ansi2knr program is distributed as a separate set of sources and a
separate executable file which are aggregated on a storage medium together
with another program, this in itself does not bring the other program under
the GPL, nor does the mere fact that such a program or the procedures for
constructing it invoke the ansi2knr executable bring any other part of the
program under the GPL.
*/

/*
---------- Here is the GNU GPL file COPYLEFT, referred to above ----------
----- These terms do NOT apply to the JPEG software itself; see README ------

		    GHOSTSCRIPT GENERAL PUBLIC LICENSE
		    (Clarified 11 Feb 1988)

 Copyright (C) 1988 Richard M. Stallman
 Everyone is permitted to copy and distribute verbatim copies of this
 license, but changing it is not allowed.  You can also use this wording
 to make the terms for other programs.

  The license agreements of most software companies keep you at the
mercy of those companies.  By contrast, our general public license is
intended to give everyone the right to share Ghostscript.  To make sure
that you get the rights we want you to have, we need to make
restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights.  Hence this license agreement.

  Specifically, we want to make sure that you have the right to give
away copies of Ghostscript, that you receive source code or else can get
it if you want it, that you can change Ghostscript or use pieces of it
in new free programs, and that you know you can do these things.

  To make sure that everyone has such rights, we have to forbid you to
deprive anyone else of these rights.  For example, if you distribute
copies of Ghostscript, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must tell them their rights.

  Also, for our own protection, we must make certain that everyone finds
out that there is no warranty for Ghostscript.  If Ghostscript is
modified by someone else and passed on, we want its recipients to know
that what they have is not what we distributed, so that any problems
introduced by others will not reflect on our reputation.

  Therefore we (Richard M. Stallman and the Free Software Foundation,
Inc.) make the following terms which say what you must do to be allowed
to distribute or change Ghostscript.


			COPYING POLICIES

  1. You may copy and distribute verbatim copies of Ghostscript source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy a valid copyright and license
notice "Copyright (C) 1989 Aladdin Enterprises.  All rights reserved.
Distributed by Free Software Foundation, Inc." (or with whatever year is
appropriate); keep intact the notices on all files that refer to this
License Agreement and to the absence of any warranty; and give any other
recipients of the Ghostscript program a copy of this License Agreement
along with the program.  You may charge a distribution fee for the
physical act of transferring a copy.

  2. You may modify your copy or copies of Ghostscript or any portion of
it, and copy and distribute such modifications under the terms of
Paragraph 1 above, provided that you also do the following:

    a) cause the modified files to carry prominent notices stating
    that you changed the files and the date of any change; and

    b) cause the whole of any work that you distribute or publish,
    that in whole or in part contains or is a derivative of Ghostscript
    or any part thereof, to be licensed at no charge to all third
    parties on terms identical to those contained in this License
    Agreement (except that you may choose to grant more extensive
    warranty protection to some or all third parties, at your option).

    c) You may charge a distribution fee for the physical act of
    transferring a copy, and you may at your option offer warranty
    protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its
derivative) on a volume of a storage or distribution medium does not bring
the other program under the scope of these terms.

  3. You may copy and distribute Ghostscript (or a portion or derivative
of it, under Paragraph 2) in object code or executable form under the
terms of Paragraphs 1 and 2 above provided that you also do one of the
following:

    a) accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of
    Paragraphs 1 and 2 above; or,

    b) accompany it with a written offer, valid for at least three
    years, to give any third party free (except for a nominal
    shipping charge) a complete machine-readable copy of the
    corresponding source code, to be distributed under the terms of
    Paragraphs 1 and 2 above; or,

    c) accompany it with the information you received as to where the
    corresponding source code may be obtained.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form alone.)

For an executable file, complete source code means all the source code for
all modules it contains; but, as a special exception, it need not include
source code for modules which are standard libraries that accompany the
operating system on which the executable file runs.

  4. You may not copy, sublicense, distribute or transfer Ghostscript
except as expressly provided under this License Agreement.  Any attempt
otherwise to copy, sublicense, distribute or transfer Ghostscript is
void and your rights to use the program under this License agreement
shall be automatically terminated.  However, parties who have received
computer software programs from you with this License Agreement will not
have their licenses terminated so long as such parties remain in full
compliance.

  5. If you wish to incorporate parts of Ghostscript into other free
programs whose distribution conditions are different, write to the Free
Software Foundation at 675 Mass Ave, Cambridge, MA 02139.  We have not
yet worked out a simple rule that can be stated here, but we will often
permit this.  We will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the
sharing and reuse of software.

Your comments and suggestions about our licensing policies and our
software are welcome!  Please contact the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, or call (617) 876-3296.

		       NO WARRANTY

  BECAUSE GHOSTSCRIPT IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY
NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW.  EXCEPT
WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE FOUNDATION, INC, RICHARD
M. STALLMAN, ALADDIN ENTERPRISES, L. PETER DEUTSCH, AND/OR OTHER PARTIES
PROVIDE GHOSTSCRIPT "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF GHOSTSCRIPT IS WITH
YOU.  SHOULD GHOSTSCRIPT PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M.
STALLMAN, THE FREE SOFTWARE FOUNDATION, INC., L. PETER DEUTSCH, ALADDIN
ENTERPRISES, AND/OR ANY OTHER PARTY WHO MAY MODIFY AND REDISTRIBUTE
GHOSTSCRIPT AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY LOST PROFITS, LOST MONIES, OR OTHER SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) GHOSTSCRIPT, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM
BY ANY OTHER PARTY.

-------------------- End of file COPYLEFT ------------------------------
*/

/*
 * Usage:
	ansi2knr input_file [output_file]
 * If no output_file is supplied, output goes to stdout.
 * There are no error messages.
 *
 * ansi2knr recognizes function definitions by seeing a non-keyword
 * identifier at the left margin, followed by a left parenthesis,
 * with a right parenthesis as the last character on the line,
 * and with a left brace as the first token on the following line
 * (ignoring possible intervening comments).
 * It will recognize a multi-line header provided that no intervening
 * line ends with a left or right brace or a semicolon.
 * These algorithms ignore whitespace and comments, except that
 * the function name must be the first thing on the line.
 * The following constructs will confuse it:
 *	- Any other construct that starts at the left margin and
 *	    follows the above syntax (such as a macro or function call).
 *	- Some macros that tinker with the syntax of the function header.
 */

/*
 * The original and principal author of ansi2knr is L. Peter Deutsch
 * <ghost at aladdin.com>.  Other authors are noted in the change history
 * that follows (in reverse chronological order):
	lpd 96-01-21 added code to cope with not HAVE_CONFIG_H and with
		compilers that don't understand void, as suggested by
		Tom Lane
	lpd 96-01-15 changed to require that the first non-comment token
		on the line following a function header be a left brace,
		to reduce sensitivity to macros, as suggested by Tom Lane
		<tgl at sss.pgh.pa.us>
	lpd 95-06-22 removed #ifndefs whose sole purpose was to define
		undefined preprocessor symbols as 0; changed all #ifdefs
		for configuration symbols to #ifs
	lpd 95-04-05 changed copyright notice to make it clear that
		including ansi2knr in a program does not bring the entire
		program under the GPL
	lpd 94-12-18 added conditionals for systems where ctype macros
		don't handle 8-bit characters properly, suggested by
		Francois Pinard <pinard at iro.umontreal.ca>;
		removed --varargs switch (this is now the default)
	lpd 94-10-10 removed CONFIG_BROKETS conditional
	lpd 94-07-16 added some conditionals to help GNU `configure',
		suggested by Francois Pinard <pinard at iro.umontreal.ca>;
		properly erase prototype args in function parameters,
		contributed by Jim Avera <jima at netcom.com>;
		correct error in writeblanks (it shouldn't erase EOLs)
	lpd 89-xx-xx original version
 */

/* Most of the conditionals here are to make ansi2knr work with */
/* or without the GNU configure machinery. */

#if HAVE_CONFIG_H
# include <config.h>
#endif

#include <stdio.h>
#include <ctype.h>

#if HAVE_CONFIG_H

/*
   For properly autoconfiguring ansi2knr, use AC_CONFIG_HEADER(config.h).
   This will define HAVE_CONFIG_H and so, activate the following lines.
 */

# if STDC_HEADERS || HAVE_STRING_H
#  include <string.h>
# else
#  include <strings.h>
# endif

#else /* not HAVE_CONFIG_H */

/* Otherwise do it the hard way */

# ifdef BSD
#  include <strings.h>
# else
#  ifdef VMS
    extern int strlen(), strncmp();
#  else
#   include <string.h>
#  endif
# endif

#endif /* not HAVE_CONFIG_H */

#if STDC_HEADERS
# include <stdlib.h>
#else
/*
   malloc and free should be declared in stdlib.h,
   but if you've got a K&R compiler, they probably aren't.
 */
# ifdef MSDOS
#  include <malloc.h>
# else
#  ifdef VMS
     extern char *malloc();
     extern void free();
#  else
     extern char *malloc();
     extern int free();
#  endif
# endif

#endif

/*
 * The ctype macros don't always handle 8-bit characters correctly.
 * Compensate for this here.
 */
#ifdef isascii
#  undef HAVE_ISASCII		/* just in case */
#  define HAVE_ISASCII 1
#else
#endif
#if STDC_HEADERS || !HAVE_ISASCII
#  define is_ascii(c) 1
#else
#  define is_ascii(c) isascii(c)
#endif

#define is_space(c) (is_ascii(c) && isspace(c))
#define is_alpha(c) (is_ascii(c) && isalpha(c))
#define is_alnum(c) (is_ascii(c) && isalnum(c))

/* Scanning macros */
#define isidchar(ch) (is_alnum(ch) || (ch) == '_')
#define isidfirstchar(ch) (is_alpha(ch) || (ch) == '_')

/* Forward references */
char *skipspace();
int writeblanks();
int test1();
int convert1();

/* The main program */
int
main(argc, argv)
    int argc;
    char *argv[];
{	FILE *in, *out;
#define bufsize 5000			/* arbitrary size */
	char *buf;
	char *line;
	char *more;
	/*
	 * In previous versions, ansi2knr recognized a --varargs switch.
	 * If this switch was supplied, ansi2knr would attempt to convert
	 * a ... argument to va_alist and va_dcl; if this switch was not
	 * supplied, ansi2knr would simply drop any such arguments.
	 * Now, ansi2knr always does this conversion, and we only
	 * check for this switch for backward compatibility.
	 */
	int convert_varargs = 1;

	if ( argc > 1 && argv[1][0] == '-' )
	  {	if ( !strcmp(argv[1], "--varargs") )
		  {	convert_varargs = 1;
			argc--;
			argv++;
		  }
		else
		  {	fprintf(stderr, "Unrecognized switch: %s\n", argv[1]);
			exit(1);
		  }
	  }
	switch ( argc )
	   {
	default:
		printf("Usage: ansi2knr input_file [output_file]\n");
		exit(0);
	case 2:
		out = stdout;
		break;
	case 3:
		out = fopen(argv[2], "w");
		if ( out == NULL )
		   {	fprintf(stderr, "Cannot open output file %s\n", argv[2]);
			exit(1);
		   }
	   }
	in = fopen(argv[1], "r");
	if ( in == NULL )
	   {	fprintf(stderr, "Cannot open input file %s\n", argv[1]);
		exit(1);
	   }
	fprintf(out, "#line 1 \"%s\"\n", argv[1]);
	buf = malloc(bufsize);
	line = buf;
	while ( fgets(line, (unsigned)(buf + bufsize - line), in) != NULL )
	   {
test:		line += strlen(line);
		switch ( test1(buf) )
		   {
		case 2:			/* a function header */
			convert1(buf, out, 1, convert_varargs);
			break;
		case 1:			/* a function */
			/* Check for a { at the start of the next line. */
			more = ++line;
f:			if ( line >= buf + (bufsize - 1) ) /* overflow check */
			  goto wl;
			if ( fgets(line, (unsigned)(buf + bufsize - line), in) == NULL )
			  goto wl;
			switch ( *skipspace(more, 1) )
			  {
			  case '{':
			    /* Definitely a function header. */
			    convert1(buf, out, 0, convert_varargs);
			    fputs(more, out);
			    break;
			  case 0:
			    /* The next line was blank or a comment: */
			    /* keep scanning for a non-comment. */
			    line += strlen(line);
			    goto f;
			  default:
			    /* buf isn't a function header, but */
			    /* more might be. */
			    fputs(buf, out);
			    strcpy(buf, more);
			    line = buf;
			    goto test;
			  }
			break;
		case -1:		/* maybe the start of a function */
			if ( line != buf + (bufsize - 1) ) /* overflow check */
			  continue;
			/* falls through */
		default:		/* not a function */
wl:			fputs(buf, out);
			break;
		   }
		line = buf;
	   }
	if ( line != buf )
	  fputs(buf, out);
	free(buf);
	fclose(out);
	fclose(in);
	return 0;
}

/* Skip over space and comments, in either direction. */
char *
skipspace(p, dir)
    register char *p;
    register int dir;			/* 1 for forward, -1 for backward */
{	for ( ; ; )
	   {	while ( is_space(*p) )
		  p += dir;
		if ( !(*p == '/' && p[dir] == '*') )
		  break;
		p += dir;  p += dir;
		while ( !(*p == '*' && p[dir] == '/') )
		   {	if ( *p == 0 )
			  return p;	/* multi-line comment?? */
			p += dir;
		   }
		p += dir;  p += dir;
	   }
	return p;
}

/*
 * Write blanks over part of a string.
 * Don't overwrite end-of-line characters.
 */
int
writeblanks(start, end)
    char *start;
    char *end;
{	char *p;
	for ( p = start; p < end; p++ )
	  if ( *p != '\r' && *p != '\n' )
	    *p = ' ';
	return 0;
}

/*
 * Test whether the string in buf is a function definition.
 * The string may contain and/or end with a newline.
 * Return as follows:
 *	0 - definitely not a function definition;
 *	1 - definitely a function definition;
 *	2 - definitely a function prototype (NOT USED);
 *	-1 - may be the beginning of a function definition,
 *		append another line and look again.
 * The reason we don't attempt to convert function prototypes is that
 * Ghostscript's declaration-generating macros look too much like
 * prototypes, and confuse the algorithms.
 */
int
test1(buf)
    char *buf;
{	register char *p = buf;
	char *bend;
	char *endfn;
	int contin;

	if ( !isidfirstchar(*p) )
	  return 0;		/* no name at left margin */
	bend = skipspace(buf + strlen(buf) - 1, -1);
	switch ( *bend )
	   {
	   case ';': contin = 0 /*2*/; break;
	   case ')': contin = 1; break;
	   case '{': return 0;		/* not a function */
	   case '}': return 0;		/* not a function */
	   default: contin = -1;
	   }
	while ( isidchar(*p) )
	  p++;
	endfn = p;
	p = skipspace(p, 1);
	if ( *p++ != '(' )
	  return 0;		/* not a function */
	p = skipspace(p, 1);
	if ( *p == ')' )
	  return 0;		/* no parameters */
	/* Check that the apparent function name isn't a keyword. */
	/* We only need to check for keywords that could be followed */
	/* by a left parenthesis (which, unfortunately, is most of them). */
	   {	static char *words[] =
		   {	"asm", "auto", "case", "char", "const", "double",
			"extern", "float", "for", "if", "int", "long",
			"register", "return", "short", "signed", "sizeof",
			"static", "switch", "typedef", "unsigned",
			"void", "volatile", "while", 0
		   };
		char **key = words;
		char *kp;
		int len = endfn - buf;

		while ( (kp = *key) != 0 )
		   {	if ( strlen(kp) == len && !strncmp(kp, buf, len) )
			  return 0;	/* name is a keyword */
			key++;
		   }
	   }
	return contin;
}

/* Convert a recognized function definition or header to K&R syntax. */
int
convert1(buf, out, header, convert_varargs)
    char *buf;
    FILE *out;
    int header;			/* Boolean */
    int convert_varargs;	/* Boolean */
{	char *endfn;
	register char *p;
	char **breaks;
	unsigned num_breaks = 2;	/* for testing */
	char **btop;
	char **bp;
	char **ap;
	char *vararg = 0;

	/* Pre-ANSI implementations don't agree on whether strchr */
	/* is called strchr or index, so we open-code it here. */
	for ( endfn = buf; *(endfn++) != '('; )
	  ;
top:	p = endfn;
	breaks = (char **)malloc(sizeof(char *) * num_breaks * 2);
	if ( breaks == 0 )
	   {	/* Couldn't allocate break table, give up */
		fprintf(stderr, "Unable to allocate break table!\n");
		fputs(buf, out);
		return -1;
	   }
	btop = breaks + num_breaks * 2 - 2;
	bp = breaks;
	/* Parse the argument list */
	do
	   {	int level = 0;
		char *lp = NULL;
		char *rp;
		char *end = NULL;

		if ( bp >= btop )
		   {	/* Filled up break table. */
			/* Allocate a bigger one and start over. */
			free((char *)breaks);
			num_breaks <<= 1;
			goto top;
		   }
		*bp++ = p;
		/* Find the end of the argument */
		for ( ; end == NULL; p++ )
		   {	switch(*p)
			   {
			   case ',':
				if ( !level ) end = p;
				break;
			   case '(':
				if ( !level ) lp = p;
				level++;
				break;
			   case ')':
				if ( --level < 0 ) end = p;
				else rp = p;
				break;
			   case '/':
				p = skipspace(p, 1) - 1;
				break;
			   default:
				;
			   }
		   }
		/* Erase any embedded prototype parameters. */
		if ( lp )
		  writeblanks(lp + 1, rp);
		p--;			/* back up over terminator */
		/* Find the name being declared. */
		/* This is complicated because of procedure and */
		/* array modifiers. */
		for ( ; ; )
		   {	p = skipspace(p - 1, -1);
			switch ( *p )
			   {
			   case ']':	/* skip array dimension(s) */
			   case ')':	/* skip procedure args OR name */
			   {	int level = 1;
				while ( level )
				 switch ( *--p )
				   {
				   case ']': case ')': level++; break;
				   case '[': case '(': level--; break;
				   case '/': p = skipspace(p, -1) + 1; break;
				   default: ;
				   }
			   }
				if ( *p == '(' && *skipspace(p + 1, 1) == '*' )
				   {	/* We found the name being declared */
					while ( !isidfirstchar(*p) )
					  p = skipspace(p, 1) + 1;
					goto found;
				   }
				break;
			   default:
				goto found;
			   }
		   }
found:		if ( *p == '.' && p[-1] == '.' && p[-2] == '.' )
		  {	if ( convert_varargs )
			  {	*bp++ = "va_alist";
				vararg = p-2;
			  }
			else
			  {	p++;
				if ( bp == breaks + 1 )	/* sole argument */
				  writeblanks(breaks[0], p);
				else
				  writeblanks(bp[-1] - 1, p);
				bp--;
			  }
		   }
		else
		   {	while ( isidchar(*p) ) p--;
			*bp++ = p+1;
		   }
		p = end;
	   }
	while ( *p++ == ',' );
	*bp = p;
	/* Make a special check for 'void' arglist */
	if ( bp == breaks+2 )
	   {	p = skipspace(breaks[0], 1);
		if ( !strncmp(p, "void", 4) )
		   {	p = skipspace(p+4, 1);
			if ( p == breaks[2] - 1 )
			   {	bp = breaks;	/* yup, pretend arglist is empty */
				writeblanks(breaks[0], p + 1);
			   }
		   }
	   }
	/* Put out the function name and left parenthesis. */
	p = buf;
	while ( p != endfn ) putc(*p, out), p++;
	/* Put out the declaration. */
	if ( header )
	  {	fputs(");", out);
		for ( p = breaks[0]; *p; p++ )
		  if ( *p == '\r' || *p == '\n' )
		    putc(*p, out);
	  }
	else
	  {	for ( ap = breaks+1; ap < bp; ap += 2 )
		  {	p = *ap;
			while ( isidchar(*p) )
			  putc(*p, out), p++;
			if ( ap < bp - 1 )
			  fputs(", ", out);
		  }
		fputs(")  ", out);
		/* Put out the argument declarations */
		for ( ap = breaks+2; ap <= bp; ap += 2 )
		  (*ap)[-1] = ';';
		if ( vararg != 0 )
		  {	*vararg = 0;
			fputs(breaks[0], out);		/* any prior args */
			fputs("va_dcl", out);		/* the final arg */
			fputs(bp[0], out);
		  }
		else
		  fputs(breaks[0], out);
	  }
	free((char *)breaks);
	return 0;
}

--- NEW FILE: jdhuff.h ---
/*
 * jdhuff.h
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains declarations for Huffman entropy decoding routines
 * that are shared between the sequential decoder (jdhuff.c) and the
 * progressive decoder (jdphuff.c).  No other modules need to see these.
 */

/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_make_d_derived_tbl	jMkDDerived
#define jpeg_fill_bit_buffer	jFilBitBuf
#define jpeg_huff_decode	jHufDecode
#endif /* NEED_SHORT_EXTERNAL_NAMES */


/* Derived data constructed for each Huffman table */

#define HUFF_LOOKAHEAD	8	/* # of bits of lookahead */

typedef struct {
  /* Basic tables: (element [0] of each array is unused) */
  INT32 maxcode[18];		/* largest code of length k (-1 if none) */
  /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
  INT32 valoffset[17];		/* huffval[] offset for codes of length k */
  /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
   * the smallest code of length k; so given a code of length k, the
   * corresponding symbol is huffval[code + valoffset[k]]
   */

  /* Link to public Huffman table (needed only in jpeg_huff_decode) */
  JHUFF_TBL *pub;

  /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
   * the input data stream.  If the next Huffman code is no more
   * than HUFF_LOOKAHEAD bits long, we can obtain its length and
   * the corresponding symbol directly from these tables.
   */
  int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
  UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
} d_derived_tbl;

/* Expand a Huffman table definition into the derived format */
EXTERN(void) jpeg_make_d_derived_tbl
	JPP((j_decompress_ptr cinfo, boolean isDC, int tblno,
	     d_derived_tbl ** pdtbl));


/*
 * Fetching the next N bits from the input stream is a time-critical operation
 * for the Huffman decoders.  We implement it with a combination of inline
 * macros and out-of-line subroutines.  Note that N (the number of bits
 * demanded at one time) never exceeds 15 for JPEG use.
 *
 * We read source bytes into get_buffer and dole out bits as needed.
 * If get_buffer already contains enough bits, they are fetched in-line
 * by the macros CHECK_BIT_BUFFER and GET_BITS.  When there aren't enough
 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
 * as full as possible (not just to the number of bits needed; this
 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
 * at least the requested number of bits --- dummy zeroes are inserted if
 * necessary.
 */

typedef INT32 bit_buf_type;	/* type of bit-extraction buffer */
#define BIT_BUF_SIZE  32	/* size of buffer in bits */

/* If long is > 32 bits on your machine, and shifting/masking longs is
 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
 * appropriately should be a win.  Unfortunately we can't define the size
 * with something like  #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
 * because not all machines measure sizeof in 8-bit bytes.
 */

typedef struct {		/* Bitreading state saved across MCUs */
  bit_buf_type get_buffer;	/* current bit-extraction buffer */
  int bits_left;		/* # of unused bits in it */
} bitread_perm_state;

typedef struct {		/* Bitreading working state within an MCU */
  /* Current data source location */
  /* We need a copy, rather than munging the original, in case of suspension */
  const JOCTET * next_input_byte; /* => next byte to read from source */
  size_t bytes_in_buffer;	/* # of bytes remaining in source buffer */
  /* Bit input buffer --- note these values are kept in register variables,
   * not in this struct, inside the inner loops.
   */
  bit_buf_type get_buffer;	/* current bit-extraction buffer */
  int bits_left;		/* # of unused bits in it */
  /* Pointer needed by jpeg_fill_bit_buffer. */
  j_decompress_ptr cinfo;	/* back link to decompress master record */
} bitread_working_state;

/* Macros to declare and load/save bitread local variables. */
#define BITREAD_STATE_VARS  \
	register bit_buf_type get_buffer;  \
	register int bits_left;  \
	bitread_working_state br_state

#define BITREAD_LOAD_STATE(cinfop,permstate)  \
	br_state.cinfo = cinfop; \
	br_state.next_input_byte = cinfop->src->next_input_byte; \
	br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
	get_buffer = permstate.get_buffer; \
	bits_left = permstate.bits_left;

#define BITREAD_SAVE_STATE(cinfop,permstate)  \
	cinfop->src->next_input_byte = br_state.next_input_byte; \
	cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
	permstate.get_buffer = get_buffer; \
	permstate.bits_left = bits_left

/*
 * These macros provide the in-line portion of bit fetching.
 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
 * before using GET_BITS, PEEK_BITS, or DROP_BITS.
 * The variables get_buffer and bits_left are assumed to be locals,
 * but the state struct might not be (jpeg_huff_decode needs this).
 *	CHECK_BIT_BUFFER(state,n,action);
 *		Ensure there are N bits in get_buffer; if suspend, take action.
 *      val = GET_BITS(n);
 *		Fetch next N bits.
 *      val = PEEK_BITS(n);
 *		Fetch next N bits without removing them from the buffer.
 *	DROP_BITS(n);
 *		Discard next N bits.
 * The value N should be a simple variable, not an expression, because it
 * is evaluated multiple times.
 */

#define CHECK_BIT_BUFFER(state,nbits,action) \
	{ if (bits_left < (nbits)) {  \
	    if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits))  \
	      { action; }  \
	    get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }

#define GET_BITS(nbits) \
	(((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))

#define PEEK_BITS(nbits) \
	(((int) (get_buffer >> (bits_left -  (nbits)))) & ((1<<(nbits))-1))

#define DROP_BITS(nbits) \
	(bits_left -= (nbits))

/* Load up the bit buffer to a depth of at least nbits */
EXTERN(boolean) jpeg_fill_bit_buffer
	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
	     register int bits_left, int nbits));


/*
 * Code for extracting next Huffman-coded symbol from input bit stream.
 * Again, this is time-critical and we make the main paths be macros.
 *
 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
 * without looping.  Usually, more than 95% of the Huffman codes will be 8
 * or fewer bits long.  The few overlength codes are handled with a loop,
 * which need not be inline code.
 *
 * Notes about the HUFF_DECODE macro:
 * 1. Near the end of the data segment, we may fail to get enough bits
 *    for a lookahead.  In that case, we do it the hard way.
 * 2. If the lookahead table contains no entry, the next code must be
 *    more than HUFF_LOOKAHEAD bits long.
 * 3. jpeg_huff_decode returns -1 if forced to suspend.
 */

#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
{ register int nb, look; \
  if (bits_left < HUFF_LOOKAHEAD) { \
    if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
    get_buffer = state.get_buffer; bits_left = state.bits_left; \
    if (bits_left < HUFF_LOOKAHEAD) { \
      nb = 1; goto slowlabel; \
    } \
  } \
  look = PEEK_BITS(HUFF_LOOKAHEAD); \
  if ((nb = htbl->look_nbits[look]) != 0) { \
    DROP_BITS(nb); \
    result = htbl->look_sym[look]; \
  } else { \
    nb = HUFF_LOOKAHEAD+1; \
slowlabel: \
    if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
	{ failaction; } \
    get_buffer = state.get_buffer; bits_left = state.bits_left; \
  } \
}

/* Out-of-line case for Huffman code fetching */
EXTERN(int) jpeg_huff_decode
	JPP((bitread_working_state * state, register bit_buf_type get_buffer,
	     register int bits_left, d_derived_tbl * htbl, int min_bits));

--- NEW FILE: cdjpeg.c ---
/*
 * cdjpeg.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains common support routines used by the IJG application
 * programs (cjpeg, djpeg, jpegtran).
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */
#include <ctype.h>		/* to declare isupper(), tolower() */
#ifdef NEED_SIGNAL_CATCHER
#include <signal.h>		/* to declare signal() */
#endif
#ifdef USE_SETMODE
#include <fcntl.h>		/* to declare setmode()'s parameter macros */
/* If you have setmode() but not <io.h>, just delete this line: */
#include <io.h>			/* to declare setmode() */
#endif


/*
 * Signal catcher to ensure that temporary files are removed before aborting.
 * NB: for Amiga Manx C this is actually a global routine named _abort();
 * we put "#define signal_catcher _abort" in jconfig.h.  Talk about bogus...
 */

#ifdef NEED_SIGNAL_CATCHER

static j_common_ptr sig_cinfo;

void				/* must be global for Manx C */
signal_catcher (int signum)
{
  if (sig_cinfo != NULL) {
    if (sig_cinfo->err != NULL) /* turn off trace output */
      sig_cinfo->err->trace_level = 0;
    jpeg_destroy(sig_cinfo);	/* clean up memory allocation & temp files */
  }
  exit(EXIT_FAILURE);
}


GLOBAL(void)
enable_signal_catcher (j_common_ptr cinfo)
{
  sig_cinfo = cinfo;
#ifdef SIGINT			/* not all systems have SIGINT */
  signal(SIGINT, signal_catcher);
#endif
#ifdef SIGTERM			/* not all systems have SIGTERM */
  signal(SIGTERM, signal_catcher);
#endif
}

#endif


/*
 * Optional progress monitor: display a percent-done figure on stderr.
 */

#ifdef PROGRESS_REPORT

METHODDEF(void)
progress_monitor (j_common_ptr cinfo)
{
  cd_progress_ptr prog = (cd_progress_ptr) cinfo->progress;
  int total_passes = prog->pub.total_passes + prog->total_extra_passes;
  int percent_done = (int) (prog->pub.pass_counter*100L/prog->pub.pass_limit);

  if (percent_done != prog->percent_done) {
    prog->percent_done = percent_done;
    if (total_passes > 1) {
      fprintf(stderr, "\rPass %d/%d: %3d%% ",
	      prog->pub.completed_passes + prog->completed_extra_passes + 1,
	      total_passes, percent_done);
    } else {
      fprintf(stderr, "\r %3d%% ", percent_done);
    }
    fflush(stderr);
  }
}


GLOBAL(void)
start_progress_monitor (j_common_ptr cinfo, cd_progress_ptr progress)
{
  /* Enable progress display, unless trace output is on */
  if (cinfo->err->trace_level == 0) {
    progress->pub.progress_monitor = progress_monitor;
    progress->completed_extra_passes = 0;
    progress->total_extra_passes = 0;
    progress->percent_done = -1;
    cinfo->progress = &progress->pub;
  }
}


GLOBAL(void)
end_progress_monitor (j_common_ptr cinfo)
{
  /* Clear away progress display */
  if (cinfo->err->trace_level == 0) {
    fprintf(stderr, "\r                \r");
    fflush(stderr);
  }
}

#endif


/*
 * Case-insensitive matching of possibly-abbreviated keyword switches.
 * keyword is the constant keyword (must be lower case already),
 * minchars is length of minimum legal abbreviation.
 */

GLOBAL(boolean)
keymatch (char * arg, const char * keyword, int minchars)
{
  register int ca, ck;
  register int nmatched = 0;

  while ((ca = *arg++) != '\0') {
    if ((ck = *keyword++) == '\0')
      return FALSE;		/* arg longer than keyword, no good */
    if (isupper(ca))		/* force arg to lcase (assume ck is already) */
      ca = tolower(ca);
    if (ca != ck)
      return FALSE;		/* no good */
    nmatched++;			/* count matched characters */
  }
  /* reached end of argument; fail if it's too short for unique abbrev */
  if (nmatched < minchars)
    return FALSE;
  return TRUE;			/* A-OK */
}


/*
 * Routines to establish binary I/O mode for stdin and stdout.
 * Non-Unix systems often require some hacking to get out of text mode.
 */

GLOBAL(FILE *)
read_stdin (void)
{
  FILE * input_file = stdin;

#ifdef USE_SETMODE		/* need to hack file mode? */
  setmode(fileno(stdin), O_BINARY);
#endif
#ifdef USE_FDOPEN		/* need to re-open in binary mode? */
  if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) {
    fprintf(stderr, "Cannot reopen stdin\n");
    exit(EXIT_FAILURE);
  }
#endif
  return input_file;
}


GLOBAL(FILE *)
write_stdout (void)
{
  FILE * output_file = stdout;

#ifdef USE_SETMODE		/* need to hack file mode? */
  setmode(fileno(stdout), O_BINARY);
#endif
#ifdef USE_FDOPEN		/* need to re-open in binary mode? */
  if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) {
    fprintf(stderr, "Cannot reopen stdout\n");
    exit(EXIT_FAILURE);
  }
#endif
  return output_file;
}

--- NEW FILE: ltmain.sh ---
# ltmain.sh - Provide generalized library-building support services.
# NOTE: Changing this file will not affect anything until you rerun ltconfig.
#
# Copyright (C) 1996-1998 Free Software Foundation, Inc.
# Gordon Matzigkeit <gord at gnu.ai.mit.edu>, 1996
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
[...2414 lines suppressed...]
If FILE is a libtool library, all the files associated with it are deleted.
Otherwise, only FILE itself is deleted using RM."
  ;;

*)
  $echo "$modename: invalid operation mode \`$mode'" 1>&2
  $echo "$help" 1>&2
  exit 1
  ;;
esac

echo
$echo "Try \`$modename --help' for more information about other modes."

exit 0

# Local Variables:
# mode:shell-script
# sh-indentation:2
# End:

--- NEW FILE: jdcoefct.c ---
/*
 * jdcoefct.c
 *
 * Copyright (C) 1994-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the coefficient buffer controller for decompression.
 * This controller is the top level of the JPEG decompressor proper.
 * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
 *
 * In buffered-image mode, this controller is the interface between
 * input-oriented processing and output-oriented processing.
 * Also, the input side (only) is used when reading a file for transcoding.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"

/* Block smoothing is only applicable for progressive JPEG, so: */
#ifndef D_PROGRESSIVE_SUPPORTED
#undef BLOCK_SMOOTHING_SUPPORTED
#endif

/* Private buffer controller object */

typedef struct {
  struct jpeg_d_coef_controller pub; /* public fields */

  /* These variables keep track of the current location of the input side. */
  /* cinfo->input_iMCU_row is also used for this. */
  JDIMENSION MCU_ctr;		/* counts MCUs processed in current row */
  int MCU_vert_offset;		/* counts MCU rows within iMCU row */
  int MCU_rows_per_iMCU_row;	/* number of such rows needed */

  /* The output side's location is represented by cinfo->output_iMCU_row. */

  /* In single-pass modes, it's sufficient to buffer just one MCU.
   * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
   * and let the entropy decoder write into that workspace each time.
   * (On 80x86, the workspace is FAR even though it's not really very big;
   * this is to keep the module interfaces unchanged when a large coefficient
   * buffer is necessary.)
   * In multi-pass modes, this array points to the current MCU's blocks
   * within the virtual arrays; it is used only by the input side.
   */
  JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];

#ifdef D_MULTISCAN_FILES_SUPPORTED
  /* In multi-pass modes, we need a virtual block array for each component. */
  jvirt_barray_ptr whole_image[MAX_COMPONENTS];
#endif

#ifdef BLOCK_SMOOTHING_SUPPORTED
  /* When doing block smoothing, we latch coefficient Al values here */
  int * coef_bits_latch;
#define SAVED_COEFS  6		/* we save coef_bits[0..5] */
#endif
} my_coef_controller;

typedef my_coef_controller * my_coef_ptr;

/* Forward declarations */
METHODDEF(int) decompress_onepass
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#ifdef D_MULTISCAN_FILES_SUPPORTED
METHODDEF(int) decompress_data
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#endif
#ifdef BLOCK_SMOOTHING_SUPPORTED
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
METHODDEF(int) decompress_smooth_data
	JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
#endif


LOCAL(void)
start_iMCU_row (j_decompress_ptr cinfo)
/* Reset within-iMCU-row counters for a new row (input side) */
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* In an interleaved scan, an MCU row is the same as an iMCU row.
   * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
   * But at the bottom of the image, process only what's left.
   */
  if (cinfo->comps_in_scan > 1) {
    coef->MCU_rows_per_iMCU_row = 1;
  } else {
    if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
    else
      coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
  }

  coef->MCU_ctr = 0;
  coef->MCU_vert_offset = 0;
}


/*
 * Initialize for an input processing pass.
 */

METHODDEF(void)
start_input_pass (j_decompress_ptr cinfo)
{
  cinfo->input_iMCU_row = 0;
  start_iMCU_row(cinfo);
}


/*
 * Initialize for an output processing pass.
 */

METHODDEF(void)
start_output_pass (j_decompress_ptr cinfo)
{
#ifdef BLOCK_SMOOTHING_SUPPORTED
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;

  /* If multipass, check to see whether to use block smoothing on this pass */
  if (coef->pub.coef_arrays != NULL) {
    if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
      coef->pub.decompress_data = decompress_smooth_data;
    else
      coef->pub.decompress_data = decompress_data;
  }
#endif
  cinfo->output_iMCU_row = 0;
}


/*
 * Decompress and return some data in the single-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Input and output must run in lockstep since we have only a one-MCU buffer.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image,
 * which we index according to the component's SOF position.
 */

METHODDEF(int)
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  int blkn, ci, xindex, yindex, yoffset, useful_width;
  JSAMPARRAY output_ptr;
  JDIMENSION start_col, output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Loop to process as much as one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
	 MCU_col_num++) {
      /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
      jzero_far((void FAR *) coef->MCU_buffer[0],
		(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
	/* Suspension forced; update state counters and exit */
	coef->MCU_vert_offset = yoffset;
	coef->MCU_ctr = MCU_col_num;
	return JPEG_SUSPENDED;
      }
      /* Determine where data should go in output_buf and do the IDCT thing.
       * We skip dummy blocks at the right and bottom edges (but blkn gets
       * incremented past them!).  Note the inner loop relies on having
       * allocated the MCU_buffer[] blocks sequentially.
       */
      blkn = 0;			/* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
	compptr = cinfo->cur_comp_info[ci];
	/* Don't bother to IDCT an uninteresting component. */
	if (! compptr->component_needed) {
	  blkn += compptr->MCU_blocks;
	  continue;
	}
	inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
	useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
						    : compptr->last_col_width;
	output_ptr = output_buf[compptr->component_index] +
	  yoffset * compptr->DCT_scaled_size;
	start_col = MCU_col_num * compptr->MCU_sample_width;
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
	  if (cinfo->input_iMCU_row < last_iMCU_row ||
	      yoffset+yindex < compptr->last_row_height) {
	    output_col = start_col;
	    for (xindex = 0; xindex < useful_width; xindex++) {
	      (*inverse_DCT) (cinfo, compptr,
			      (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
			      output_ptr, output_col);
	      output_col += compptr->DCT_scaled_size;
	    }
	  }
	  blkn += compptr->MCU_width;
	  output_ptr += compptr->DCT_scaled_size;
	}
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  cinfo->output_iMCU_row++;
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Dummy consume-input routine for single-pass operation.
 */

METHODDEF(int)
dummy_consume_data (j_decompress_ptr cinfo)
{
  return JPEG_SUSPENDED;	/* Always indicate nothing was done */
}


#ifdef D_MULTISCAN_FILES_SUPPORTED

/*
 * Consume input data and store it in the full-image coefficient buffer.
 * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
 * ie, v_samp_factor block rows for each component in the scan.
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 */

METHODDEF(int)
consume_data (j_decompress_ptr cinfo)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION MCU_col_num;	/* index of current MCU within row */
  int blkn, ci, xindex, yindex, yoffset;
  JDIMENSION start_col;
  JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
  JBLOCKROW buffer_ptr;
  jpeg_component_info *compptr;

  /* Align the virtual buffers for the components used in this scan. */
  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    buffer[ci] = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
       cinfo->input_iMCU_row * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, TRUE);
    /* Note: entropy decoder expects buffer to be zeroed,
     * but this is handled automatically by the memory manager
     * because we requested a pre-zeroed array.
     */
  }

  /* Loop to process one whole iMCU row */
  for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
       yoffset++) {
    for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
	 MCU_col_num++) {
      /* Construct list of pointers to DCT blocks belonging to this MCU */
      blkn = 0;			/* index of current DCT block within MCU */
      for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
	compptr = cinfo->cur_comp_info[ci];
	start_col = MCU_col_num * compptr->MCU_width;
	for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
	  buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
	  for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
	    coef->MCU_buffer[blkn++] = buffer_ptr++;
	  }
	}
      }
      /* Try to fetch the MCU. */
      if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
	/* Suspension forced; update state counters and exit */
	coef->MCU_vert_offset = yoffset;
	coef->MCU_ctr = MCU_col_num;
	return JPEG_SUSPENDED;
      }
    }
    /* Completed an MCU row, but perhaps not an iMCU row */
    coef->MCU_ctr = 0;
  }
  /* Completed the iMCU row, advance counters for next one */
  if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    start_iMCU_row(cinfo);
    return JPEG_ROW_COMPLETED;
  }
  /* Completed the scan */
  (*cinfo->inputctl->finish_input_pass) (cinfo);
  return JPEG_SCAN_COMPLETED;
}


/*
 * Decompress and return some data in the multi-pass case.
 * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
 * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
 *
 * NB: output_buf contains a plane for each component in image.
 */

METHODDEF(int)
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num;
  int ci, block_row, block_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number < cinfo->output_scan_number ||
	 (cinfo->input_scan_number == cinfo->output_scan_number &&
	  cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
    if (! compptr->component_needed)
      continue;
    /* Align the virtual buffer for this component. */
    buffer = (*cinfo->mem->access_virt_barray)
      ((j_common_ptr) cinfo, coef->whole_image[ci],
       cinfo->output_iMCU_row * compptr->v_samp_factor,
       (JDIMENSION) compptr->v_samp_factor, FALSE);
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row)
      block_rows = compptr->v_samp_factor;
    else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
    }
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row];
      output_col = 0;
      for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
			output_ptr, output_col);
	buffer_ptr++;
	output_col += compptr->DCT_scaled_size;
      }
      output_ptr += compptr->DCT_scaled_size;
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* D_MULTISCAN_FILES_SUPPORTED */


#ifdef BLOCK_SMOOTHING_SUPPORTED

/*
 * This code applies interblock smoothing as described by section K.8
 * of the JPEG standard: the first 5 AC coefficients are estimated from
 * the DC values of a DCT block and its 8 neighboring blocks.
 * We apply smoothing only for progressive JPEG decoding, and only if
 * the coefficients it can estimate are not yet known to full precision.
 */

/* Natural-order array positions of the first 5 zigzag-order coefficients */
#define Q01_POS  1
#define Q10_POS  8
#define Q20_POS  16
#define Q11_POS  9
#define Q02_POS  2

/*
 * Determine whether block smoothing is applicable and safe.
 * We also latch the current states of the coef_bits[] entries for the
 * AC coefficients; otherwise, if the input side of the decompressor
 * advances into a new scan, we might think the coefficients are known
 * more accurately than they really are.
 */

LOCAL(boolean)
smoothing_ok (j_decompress_ptr cinfo)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  boolean smoothing_useful = FALSE;
  int ci, coefi;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtable;
  int * coef_bits;
  int * coef_bits_latch;

  if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    return FALSE;

  /* Allocate latch area if not already done */
  if (coef->coef_bits_latch == NULL)
    coef->coef_bits_latch = (int *)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  cinfo->num_components *
				  (SAVED_COEFS * SIZEOF(int)));
  coef_bits_latch = coef->coef_bits_latch;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* All components' quantization values must already be latched. */
    if ((qtable = compptr->quant_table) == NULL)
      return FALSE;
    /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    if (qtable->quantval[0] == 0 ||
	qtable->quantval[Q01_POS] == 0 ||
	qtable->quantval[Q10_POS] == 0 ||
	qtable->quantval[Q20_POS] == 0 ||
	qtable->quantval[Q11_POS] == 0 ||
	qtable->quantval[Q02_POS] == 0)
      return FALSE;
    /* DC values must be at least partly known for all components. */
    coef_bits = cinfo->coef_bits[ci];
    if (coef_bits[0] < 0)
      return FALSE;
    /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    for (coefi = 1; coefi <= 5; coefi++) {
      coef_bits_latch[coefi] = coef_bits[coefi];
      if (coef_bits[coefi] != 0)
	smoothing_useful = TRUE;
    }
    coef_bits_latch += SAVED_COEFS;
  }

  return smoothing_useful;
}


/*
 * Variant of decompress_data for use when doing block smoothing.
 */

METHODDEF(int)
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
{
  my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
  JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
  JDIMENSION block_num, last_block_column;
  int ci, block_row, block_rows, access_rows;
  JBLOCKARRAY buffer;
  JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
  JSAMPARRAY output_ptr;
  JDIMENSION output_col;
  jpeg_component_info *compptr;
  inverse_DCT_method_ptr inverse_DCT;
  boolean first_row, last_row;
  JBLOCK workspace;
  int *coef_bits;
  JQUANT_TBL *quanttbl;
  INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
  int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
  int Al, pred;

  /* Force some input to be done if we are getting ahead of the input. */
  while (cinfo->input_scan_number <= cinfo->output_scan_number &&
	 ! cinfo->inputctl->eoi_reached) {
    if (cinfo->input_scan_number == cinfo->output_scan_number) {
      /* If input is working on current scan, we ordinarily want it to
       * have completed the current row.  But if input scan is DC,
       * we want it to keep one row ahead so that next block row's DC
       * values are up to date.
       */
      JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
      if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
	break;
    }
    if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
      return JPEG_SUSPENDED;
  }

  /* OK, output from the virtual arrays. */
  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Don't bother to IDCT an uninteresting component. */
    if (! compptr->component_needed)
      continue;
    /* Count non-dummy DCT block rows in this iMCU row. */
    if (cinfo->output_iMCU_row < last_iMCU_row) {
      block_rows = compptr->v_samp_factor;
      access_rows = block_rows * 2; /* this and next iMCU row */
      last_row = FALSE;
    } else {
      /* NB: can't use last_row_height here; it is input-side-dependent! */
      block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
      if (block_rows == 0) block_rows = compptr->v_samp_factor;
      access_rows = block_rows; /* this iMCU row only */
      last_row = TRUE;
    }
    /* Align the virtual buffer for this component. */
    if (cinfo->output_iMCU_row > 0) {
      access_rows += compptr->v_samp_factor; /* prior iMCU row too */
      buffer = (*cinfo->mem->access_virt_barray)
	((j_common_ptr) cinfo, coef->whole_image[ci],
	 (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
	 (JDIMENSION) access_rows, FALSE);
      buffer += compptr->v_samp_factor;	/* point to current iMCU row */
      first_row = FALSE;
    } else {
      buffer = (*cinfo->mem->access_virt_barray)
	((j_common_ptr) cinfo, coef->whole_image[ci],
	 (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
      first_row = TRUE;
    }
    /* Fetch component-dependent info */
    coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    quanttbl = compptr->quant_table;
    Q00 = quanttbl->quantval[0];
    Q01 = quanttbl->quantval[Q01_POS];
    Q10 = quanttbl->quantval[Q10_POS];
    Q20 = quanttbl->quantval[Q20_POS];
    Q11 = quanttbl->quantval[Q11_POS];
    Q02 = quanttbl->quantval[Q02_POS];
    inverse_DCT = cinfo->idct->inverse_DCT[ci];
    output_ptr = output_buf[ci];
    /* Loop over all DCT blocks to be processed. */
    for (block_row = 0; block_row < block_rows; block_row++) {
      buffer_ptr = buffer[block_row];
      if (first_row && block_row == 0)
	prev_block_row = buffer_ptr;
      else
	prev_block_row = buffer[block_row-1];
      if (last_row && block_row == block_rows-1)
	next_block_row = buffer_ptr;
      else
	next_block_row = buffer[block_row+1];
      /* We fetch the surrounding DC values using a sliding-register approach.
       * Initialize all nine here so as to do the right thing on narrow pics.
       */
      DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
      DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
      DC7 = DC8 = DC9 = (int) next_block_row[0][0];
      output_col = 0;
      last_block_column = compptr->width_in_blocks - 1;
      for (block_num = 0; block_num <= last_block_column; block_num++) {
	/* Fetch current DCT block into workspace so we can modify it. */
	jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
	/* Update DC values */
	if (block_num < last_block_column) {
	  DC3 = (int) prev_block_row[1][0];
	  DC6 = (int) buffer_ptr[1][0];
	  DC9 = (int) next_block_row[1][0];
	}
	/* Compute coefficient estimates per K.8.
	 * An estimate is applied only if coefficient is still zero,
	 * and is not known to be fully accurate.
	 */
	/* AC01 */
	if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
	  num = 36 * Q00 * (DC4 - DC6);
	  if (num >= 0) {
	    pred = (int) (((Q01<<7) + num) / (Q01<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	  } else {
	    pred = (int) (((Q01<<7) - num) / (Q01<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	    pred = -pred;
	  }
	  workspace[1] = (JCOEF) pred;
	}
	/* AC10 */
	if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
	  num = 36 * Q00 * (DC2 - DC8);
	  if (num >= 0) {
	    pred = (int) (((Q10<<7) + num) / (Q10<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	  } else {
	    pred = (int) (((Q10<<7) - num) / (Q10<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	    pred = -pred;
	  }
	  workspace[8] = (JCOEF) pred;
	}
	/* AC20 */
	if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
	  num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
	  if (num >= 0) {
	    pred = (int) (((Q20<<7) + num) / (Q20<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	  } else {
	    pred = (int) (((Q20<<7) - num) / (Q20<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	    pred = -pred;
	  }
	  workspace[16] = (JCOEF) pred;
	}
	/* AC11 */
	if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
	  num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
	  if (num >= 0) {
	    pred = (int) (((Q11<<7) + num) / (Q11<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	  } else {
	    pred = (int) (((Q11<<7) - num) / (Q11<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	    pred = -pred;
	  }
	  workspace[9] = (JCOEF) pred;
	}
	/* AC02 */
	if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
	  num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
	  if (num >= 0) {
	    pred = (int) (((Q02<<7) + num) / (Q02<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	  } else {
	    pred = (int) (((Q02<<7) - num) / (Q02<<8));
	    if (Al > 0 && pred >= (1<<Al))
	      pred = (1<<Al)-1;
	    pred = -pred;
	  }
	  workspace[2] = (JCOEF) pred;
	}
	/* OK, do the IDCT */
	(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
			output_ptr, output_col);
	/* Advance for next column */
	DC1 = DC2; DC2 = DC3;
	DC4 = DC5; DC5 = DC6;
	DC7 = DC8; DC8 = DC9;
	buffer_ptr++, prev_block_row++, next_block_row++;
	output_col += compptr->DCT_scaled_size;
      }
      output_ptr += compptr->DCT_scaled_size;
    }
  }

  if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    return JPEG_ROW_COMPLETED;
  return JPEG_SCAN_COMPLETED;
}

#endif /* BLOCK_SMOOTHING_SUPPORTED */


/*
 * Initialize coefficient buffer controller.
 */

GLOBAL(void)
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
{
  my_coef_ptr coef;

  coef = (my_coef_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_coef_controller));
  cinfo->coef = (struct jpeg_d_coef_controller *) coef;
  coef->pub.start_input_pass = start_input_pass;
  coef->pub.start_output_pass = start_output_pass;
#ifdef BLOCK_SMOOTHING_SUPPORTED
  coef->coef_bits_latch = NULL;
#endif

  /* Create the coefficient buffer. */
  if (need_full_buffer) {
#ifdef D_MULTISCAN_FILES_SUPPORTED
    /* Allocate a full-image virtual array for each component, */
    /* padded to a multiple of samp_factor DCT blocks in each direction. */
    /* Note we ask for a pre-zeroed array. */
    int ci, access_rows;
    jpeg_component_info *compptr;

    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
	 ci++, compptr++) {
      access_rows = compptr->v_samp_factor;
#ifdef BLOCK_SMOOTHING_SUPPORTED
      /* If block smoothing could be used, need a bigger window */
      if (cinfo->progressive_mode)
	access_rows *= 3;
#endif
      coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
	((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
	 (JDIMENSION) jround_up((long) compptr->width_in_blocks,
				(long) compptr->h_samp_factor),
	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
				(long) compptr->v_samp_factor),
	 (JDIMENSION) access_rows);
    }
    coef->pub.consume_data = consume_data;
    coef->pub.decompress_data = decompress_data;
    coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
#else
    ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
  } else {
    /* We only need a single-MCU buffer. */
    JBLOCKROW buffer;
    int i;

    buffer = (JBLOCKROW)
      (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
    for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
      coef->MCU_buffer[i] = buffer + i;
    }
    coef->pub.consume_data = dummy_consume_data;
    coef->pub.decompress_data = decompress_onepass;
    coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
  }
}

--- NEW FILE: ansi2knr.1 ---
.TH ANSI2KNR 1 "19 Jan 1996"
.SH NAME
ansi2knr \- convert ANSI C to Kernighan & Ritchie C
.SH SYNOPSIS
.I ansi2knr
[--varargs] input_file [output_file]
.SH DESCRIPTION
If no output_file is supplied, output goes to stdout.
.br
There are no error messages.
.sp
.I ansi2knr
recognizes function definitions by seeing a non-keyword identifier at the left
margin, followed by a left parenthesis, with a right parenthesis as the last
character on the line, and with a left brace as the first token on the
following line (ignoring possible intervening comments).  It will recognize a
multi-line header provided that no intervening line ends with a left or right
brace or a semicolon.  These algorithms ignore whitespace and comments, except
that the function name must be the first thing on the line.
.sp
The following constructs will confuse it:
.br
     - Any other construct that starts at the left margin and follows the
above syntax (such as a macro or function call).
.br
     - Some macros that tinker with the syntax of the function header.
.sp
The --varargs switch is obsolete, and is recognized only for
backwards compatibility.  The present version of
.I ansi2knr
will always attempt to convert a ... argument to va_alist and va_dcl.
.SH AUTHOR
L. Peter Deutsch <ghost at aladdin.com> wrote the original ansi2knr and
continues to maintain the current version; most of the code in the current
version is his work.  ansi2knr also includes contributions by Francois
Pinard <pinard at iro.umontreal.ca> and Jim Avera <jima at netcom.com>.

--- NEW FILE: makefile.cfg ---
# Makefile for Independent JPEG Group's software

# makefile.cfg is edited by configure to produce a custom Makefile.

# Read installation instructions before saying "make" !!

# For compiling with source and object files in different directories.
srcdir = @srcdir@
VPATH = @srcdir@

# Where to install the programs and man pages.
prefix = @prefix@
exec_prefix = @exec_prefix@
bindir = $(exec_prefix)/bin
libdir = $(exec_prefix)/lib
includedir = $(prefix)/include
binprefix =
manprefix =
manext = 1
mandir = $(prefix)/man/man$(manext)

# The name of your C compiler:
CC= @CC@

# You may need to adjust these cc options:
CFLAGS= @CFLAGS@ @CPPFLAGS@ @INCLUDEFLAGS@
# Generally, we recommend defining any configuration symbols in jconfig.h,
# NOT via -D switches here.
# However, any special defines for ansi2knr.c may be included here:
ANSI2KNRFLAGS= @ANSI2KNRFLAGS@

# Link-time cc options:
LDFLAGS= @LDFLAGS@

# To link any special libraries, add the necessary -l commands here.
LDLIBS= @LIBS@

# If using GNU libtool, LIBTOOL references it; if not, LIBTOOL is empty.
LIBTOOL = @LIBTOOL@
# $(O) expands to "lo" if using libtool, plain "o" if not.
# Similarly, $(A) expands to "la" or "a".
O = @O@
A = @A@

# Library version ID; libtool uses this for the shared library version number.
# Note: we suggest this match the macro of the same name in jpeglib.h.
JPEG_LIB_VERSION = @JPEG_LIB_VERSION@

# Put here the object file name for the correct system-dependent memory
# manager file.  For Unix this is usually jmemnobs.o, but you may want
# to use jmemansi.o or jmemname.o if you have limited swap space.
SYSDEPMEM= @MEMORYMGR@

# miscellaneous OS-dependent stuff
SHELL= /bin/sh
# linker
LN= @LN@
# file deletion command
RM= rm -f
# directory creation command
MKDIR= mkdir
# library (.a) file creation command
AR= ar rc
# second step in .a creation (use "touch" if not needed)
AR2= @RANLIB@
# installation program
INSTALL= @INSTALL@
INSTALL_PROGRAM= @INSTALL_PROGRAM@
INSTALL_LIB= @INSTALL_LIB@
INSTALL_DATA= @INSTALL_DATA@

# End of configurable options.


# source files: JPEG library proper
LIBSOURCES= jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c \
        jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c \
        jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c \
        jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c \
        jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c \
        jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c \
        jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c \
        jquant2.c jutils.c jmemmgr.c
# memmgr back ends: compile only one of these into a working library
SYSDEPSOURCES= jmemansi.c jmemname.c jmemnobs.c jmemdos.c jmemmac.c
# source files: cjpeg/djpeg/jpegtran applications, also rdjpgcom/wrjpgcom
APPSOURCES= cjpeg.c djpeg.c jpegtran.c rdjpgcom.c wrjpgcom.c cdjpeg.c \
        rdcolmap.c rdswitch.c transupp.c rdppm.c wrppm.c rdgif.c wrgif.c \
        rdtarga.c wrtarga.c rdbmp.c wrbmp.c rdrle.c wrrle.c
SOURCES= $(LIBSOURCES) $(SYSDEPSOURCES) $(APPSOURCES)
# files included by source files
INCLUDES= jchuff.h jdhuff.h jdct.h jerror.h jinclude.h jmemsys.h jmorecfg.h \
        jpegint.h jpeglib.h jversion.h cdjpeg.h cderror.h transupp.h
# documentation, test, and support files
DOCS= README install.doc usage.doc cjpeg.1 djpeg.1 jpegtran.1 rdjpgcom.1 \
        wrjpgcom.1 wizard.doc example.c libjpeg.doc structure.doc \
        coderules.doc filelist.doc change.log
MKFILES= configure makefile.cfg makefile.ansi makefile.unix makefile.bcc \
        makefile.mc6 makefile.dj makefile.wat makefile.vc makelib.ds \
        makeapps.ds makeproj.mac makcjpeg.st makdjpeg.st makljpeg.st \
        maktjpeg.st makefile.manx makefile.sas makefile.mms makefile.vms \
        makvms.opt
CONFIGFILES= jconfig.cfg jconfig.bcc jconfig.mc6 jconfig.dj jconfig.wat \
        jconfig.vc jconfig.mac jconfig.st jconfig.manx jconfig.sas \
        jconfig.vms
CONFIGUREFILES= config.guess config.sub install-sh ltconfig ltmain.sh
OTHERFILES= jconfig.doc ckconfig.c ansi2knr.c ansi2knr.1 jmemdosa.asm
TESTFILES= testorig.jpg testimg.ppm testimg.bmp testimg.jpg testprog.jpg \
        testimgp.jpg
DISTFILES= $(DOCS) $(MKFILES) $(CONFIGFILES) $(SOURCES) $(INCLUDES) \
        $(CONFIGUREFILES) $(OTHERFILES) $(TESTFILES)
# library object files common to compression and decompression
COMOBJECTS= jcomapi.$(O) jutils.$(O) jerror.$(O) jmemmgr.$(O) $(SYSDEPMEM)
# compression library object files
CLIBOBJECTS= jcapimin.$(O) jcapistd.$(O) jctrans.$(O) jcparam.$(O) \
        jdatadst.$(O) jcinit.$(O) jcmaster.$(O) jcmarker.$(O) jcmainct.$(O) \
        jcprepct.$(O) jccoefct.$(O) jccolor.$(O) jcsample.$(O) jchuff.$(O) \
        jcphuff.$(O) jcdctmgr.$(O) jfdctfst.$(O) jfdctflt.$(O) \
        jfdctint.$(O)
# decompression library object files
DLIBOBJECTS= jdapimin.$(O) jdapistd.$(O) jdtrans.$(O) jdatasrc.$(O) \
        jdmaster.$(O) jdinput.$(O) jdmarker.$(O) jdhuff.$(O) jdphuff.$(O) \
        jdmainct.$(O) jdcoefct.$(O) jdpostct.$(O) jddctmgr.$(O) \
        jidctfst.$(O) jidctflt.$(O) jidctint.$(O) jidctred.$(O) \
        jdsample.$(O) jdcolor.$(O) jquant1.$(O) jquant2.$(O) jdmerge.$(O)
# These objectfiles are included in libjpeg.a
LIBOBJECTS= $(CLIBOBJECTS) $(DLIBOBJECTS) $(COMOBJECTS)
# object files for sample applications (excluding library files)
COBJECTS= cjpeg.$(O) rdppm.$(O) rdgif.$(O) rdtarga.$(O) rdrle.$(O) \
        rdbmp.$(O) rdswitch.$(O) cdjpeg.$(O)
DOBJECTS= djpeg.$(O) wrppm.$(O) wrgif.$(O) wrtarga.$(O) wrrle.$(O) \
        wrbmp.$(O) rdcolmap.$(O) cdjpeg.$(O)
TROBJECTS= jpegtran.$(O) rdswitch.$(O) cdjpeg.$(O) transupp.$(O)


all: @A2K_DEPS@ libjpeg.$(A) cjpeg djpeg jpegtran rdjpgcom wrjpgcom

# Special compilation rules to support ansi2knr and libtool.
.SUFFIXES: .lo .la

# How to compile with libtool.
@COM_LT at .c.lo:
@COM_LT@	$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c $(srcdir)/$*.c

# How to use ansi2knr, when not using libtool.
@COM_A2K at .c.o:
@COM_A2K@	./ansi2knr $(srcdir)/$*.c knr/$*.c
@COM_A2K@	$(CC) $(CFLAGS) -c knr/$*.c
@COM_A2K@	$(RM) knr/$*.c

# How to use ansi2knr AND libtool.
@COM_A2K at .c.lo:
@COM_A2K@	./ansi2knr $(srcdir)/$*.c knr/$*.c
@COM_A2K@	$(LIBTOOL) --mode=compile $(CC) $(CFLAGS) -c knr/$*.c
@COM_A2K@	$(RM) knr/$*.c

ansi2knr: ansi2knr.c
	$(CC) $(CFLAGS) $(ANSI2KNRFLAGS) -o ansi2knr $(srcdir)/ansi2knr.c
	$(MKDIR) knr

# the library:

# without libtool:
libjpeg.a: @A2K_DEPS@ $(LIBOBJECTS)
	$(RM) libjpeg.a
	$(AR) libjpeg.a  $(LIBOBJECTS)
	$(AR2) libjpeg.a

# with libtool:
libjpeg.la: @A2K_DEPS@ $(LIBOBJECTS)
	$(LIBTOOL) --mode=link $(CC) -o libjpeg.la $(LIBOBJECTS) \
		-rpath $(libdir) -version-info $(JPEG_LIB_VERSION)

# sample programs:

cjpeg: $(COBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o cjpeg $(COBJECTS) libjpeg.$(A) $(LDLIBS)

djpeg: $(DOBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o djpeg $(DOBJECTS) libjpeg.$(A) $(LDLIBS)

jpegtran: $(TROBJECTS) libjpeg.$(A)
	$(LN) $(LDFLAGS) -o jpegtran $(TROBJECTS) libjpeg.$(A) $(LDLIBS)

rdjpgcom: rdjpgcom.$(O)
	$(LN) $(LDFLAGS) -o rdjpgcom rdjpgcom.$(O) $(LDLIBS)

wrjpgcom: wrjpgcom.$(O)
	$(LN) $(LDFLAGS) -o wrjpgcom wrjpgcom.$(O) $(LDLIBS)

# Installation rules:

install: cjpeg djpeg jpegtran rdjpgcom wrjpgcom @FORCE_INSTALL_LIB@
	$(INSTALL_PROGRAM) cjpeg $(bindir)/$(binprefix)cjpeg
	$(INSTALL_PROGRAM) djpeg $(bindir)/$(binprefix)djpeg
	$(INSTALL_PROGRAM) jpegtran $(bindir)/$(binprefix)jpegtran
	$(INSTALL_PROGRAM) rdjpgcom $(bindir)/$(binprefix)rdjpgcom
	$(INSTALL_PROGRAM) wrjpgcom $(bindir)/$(binprefix)wrjpgcom
	$(INSTALL_DATA) $(srcdir)/cjpeg.1 $(mandir)/$(manprefix)cjpeg.$(manext)
	$(INSTALL_DATA) $(srcdir)/djpeg.1 $(mandir)/$(manprefix)djpeg.$(manext)
	$(INSTALL_DATA) $(srcdir)/jpegtran.1 $(mandir)/$(manprefix)jpegtran.$(manext)
	$(INSTALL_DATA) $(srcdir)/rdjpgcom.1 $(mandir)/$(manprefix)rdjpgcom.$(manext)
	$(INSTALL_DATA) $(srcdir)/wrjpgcom.1 $(mandir)/$(manprefix)wrjpgcom.$(manext)

install-lib: libjpeg.$(A) install-headers
	$(INSTALL_LIB) libjpeg.$(A) $(libdir)/$(binprefix)libjpeg.$(A)

install-headers: jconfig.h
	$(INSTALL_DATA) jconfig.h $(includedir)/jconfig.h
	$(INSTALL_DATA) $(srcdir)/jpeglib.h $(includedir)/jpeglib.h
	$(INSTALL_DATA) $(srcdir)/jmorecfg.h $(includedir)/jmorecfg.h
	$(INSTALL_DATA) $(srcdir)/jerror.h $(includedir)/jerror.h

clean:
	$(RM) *.o *.lo libjpeg.a libjpeg.la
	$(RM) cjpeg djpeg jpegtran rdjpgcom wrjpgcom
	$(RM) ansi2knr core testout* config.log config.status
	$(RM) -r knr .libs _libs

distclean: clean
	$(RM) Makefile jconfig.h libtool config.cache

test: cjpeg djpeg jpegtran
	$(RM) testout*
	./djpeg -dct int -ppm -outfile testout.ppm  $(srcdir)/testorig.jpg
	./djpeg -dct int -bmp -colors 256 -outfile testout.bmp  $(srcdir)/testorig.jpg
	./cjpeg -dct int -outfile testout.jpg  $(srcdir)/testimg.ppm
	./djpeg -dct int -ppm -outfile testoutp.ppm $(srcdir)/testprog.jpg
	./cjpeg -dct int -progressive -opt -outfile testoutp.jpg $(srcdir)/testimg.ppm
	./jpegtran -outfile testoutt.jpg $(srcdir)/testprog.jpg
	cmp $(srcdir)/testimg.ppm testout.ppm
	cmp $(srcdir)/testimg.bmp testout.bmp
	cmp $(srcdir)/testimg.jpg testout.jpg
	cmp $(srcdir)/testimg.ppm testoutp.ppm
	cmp $(srcdir)/testimgp.jpg testoutp.jpg
	cmp $(srcdir)/testorig.jpg testoutt.jpg

check: test

# Mistake catcher:

jconfig.h: jconfig.doc
	echo You must prepare a system-dependent jconfig.h file.
	echo Please read the installation directions in install.doc.
	exit 1

# GNU Make likes to know which target names are not really files to be made:
.PHONY: all install install-lib install-headers clean distclean test check


jcapimin.$(O): jcapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcapistd.$(O): jcapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccoefct.$(O): jccoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jccolor.$(O): jccolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcdctmgr.$(O): jcdctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jchuff.$(O): jchuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcinit.$(O): jcinit.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmainct.$(O): jcmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmarker.$(O): jcmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcmaster.$(O): jcmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcomapi.$(O): jcomapi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcparam.$(O): jcparam.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcphuff.$(O): jcphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jchuff.h
jcprepct.$(O): jcprepct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jcsample.$(O): jcsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jctrans.$(O): jctrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapimin.$(O): jdapimin.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdapistd.$(O): jdapistd.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdatadst.$(O): jdatadst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdatasrc.$(O): jdatasrc.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h
jdcoefct.$(O): jdcoefct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdcolor.$(O): jdcolor.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jddctmgr.$(O): jddctmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jdhuff.$(O): jdhuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdinput.$(O): jdinput.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmainct.$(O): jdmainct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmarker.$(O): jdmarker.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmaster.$(O): jdmaster.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdmerge.$(O): jdmerge.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdphuff.$(O): jdphuff.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdhuff.h
jdpostct.$(O): jdpostct.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdsample.$(O): jdsample.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jdtrans.$(O): jdtrans.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jerror.$(O): jerror.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jversion.h jerror.h
jfdctflt.$(O): jfdctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctfst.$(O): jfdctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jfdctint.$(O): jfdctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctflt.$(O): jidctflt.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctfst.$(O): jidctfst.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctint.$(O): jidctint.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jidctred.$(O): jidctred.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jdct.h
jquant1.$(O): jquant1.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jquant2.$(O): jquant2.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jutils.$(O): jutils.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h
jmemmgr.$(O): jmemmgr.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemansi.$(O): jmemansi.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemname.$(O): jmemname.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemnobs.$(O): jmemnobs.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemdos.$(O): jmemdos.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
jmemmac.$(O): jmemmac.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h jmemsys.h
cjpeg.$(O): cjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
djpeg.$(O): djpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h jversion.h
jpegtran.$(O): jpegtran.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h transupp.h jversion.h
rdjpgcom.$(O): rdjpgcom.c jinclude.h jconfig.h
wrjpgcom.$(O): wrjpgcom.c jinclude.h jconfig.h
cdjpeg.$(O): cdjpeg.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdcolmap.$(O): rdcolmap.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdswitch.$(O): rdswitch.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
transupp.$(O): transupp.c jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h transupp.h
rdppm.$(O): rdppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrppm.$(O): wrppm.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdgif.$(O): rdgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrgif.$(O): wrgif.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdtarga.$(O): rdtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrtarga.$(O): wrtarga.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdbmp.$(O): rdbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrbmp.$(O): wrbmp.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
rdrle.$(O): rdrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h
wrrle.$(O): wrrle.c cdjpeg.h jinclude.h jconfig.h jpeglib.h jmorecfg.h jerror.h cderror.h

--- NEW FILE: jfdctflt.c ---
/*
 * jfdctflt.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains a floating-point implementation of the
 * forward DCT (Discrete Cosine Transform).
 *
 * This implementation should be more accurate than either of the integer
 * DCT implementations.  However, it may not give the same results on all
 * machines because of differences in roundoff behavior.  Speed will depend
 * on the hardware's floating point capacity.
 *
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
 * on each column.  Direct algorithms are also available, but they are
 * much more complex and seem not to be any faster when reduced to code.
 *
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 * JPEG textbook (see REFERENCES section in file README).  The following code
 * is based directly on figure 4-8 in P&M.
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 * possible to arrange the computation so that many of the multiplies are
 * simple scalings of the final outputs.  These multiplies can then be
 * folded into the multiplications or divisions by the JPEG quantization
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 * to be done in the DCT itself.
 * The primary disadvantage of this method is that with a fixed-point
 * implementation, accuracy is lost due to imprecise representation of the
 * scaled quantization values.  However, that problem does not arise if
 * we use floating point arithmetic.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"		/* Private declarations for DCT subsystem */

#ifdef DCT_FLOAT_SUPPORTED


/*
 * This module is specialized to the case DCTSIZE = 8.
 */

#if DCTSIZE != 8
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif


/*
 * Perform the forward DCT on one block of samples.
 */

GLOBAL(void)
jpeg_fdct_float (FAST_FLOAT * data)
{
  FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  FAST_FLOAT *dataptr;
  int ctr;

  /* Pass 1: process rows. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[0] + dataptr[7];
    tmp7 = dataptr[0] - dataptr[7];
    tmp1 = dataptr[1] + dataptr[6];
    tmp6 = dataptr[1] - dataptr[6];
    tmp2 = dataptr[2] + dataptr[5];
    tmp5 = dataptr[2] - dataptr[5];
    tmp3 = dataptr[3] + dataptr[4];
    tmp4 = dataptr[3] - dataptr[4];
    
    /* Even part */
    
    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
    dataptr[4] = tmp10 - tmp11;
    
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    dataptr[2] = tmp13 + z1;	/* phase 5 */
    dataptr[6] = tmp13 - z1;
    
    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[5] = z13 + z2;	/* phase 6 */
    dataptr[3] = z13 - z2;
    dataptr[1] = z11 + z4;
    dataptr[7] = z11 - z4;

    dataptr += DCTSIZE;		/* advance pointer to next row */
  }

  /* Pass 2: process columns. */

  dataptr = data;
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    
    /* Even part */
    
    tmp10 = tmp0 + tmp3;	/* phase 2 */
    tmp13 = tmp0 - tmp3;
    tmp11 = tmp1 + tmp2;
    tmp12 = tmp1 - tmp2;
    
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
    
    z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    dataptr[DCTSIZE*6] = tmp13 - z1;
    
    /* Odd part */

    tmp10 = tmp4 + tmp5;	/* phase 2 */
    tmp11 = tmp5 + tmp6;
    tmp12 = tmp6 + tmp7;

    /* The rotator is modified from fig 4-8 to avoid extra negations. */
    z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */

    z11 = tmp7 + z3;		/* phase 5 */
    z13 = tmp7 - z3;

    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    dataptr[DCTSIZE*3] = z13 - z2;
    dataptr[DCTSIZE*1] = z11 + z4;
    dataptr[DCTSIZE*7] = z11 - z4;

    dataptr++;			/* advance pointer to next column */
  }
}

#endif /* DCT_FLOAT_SUPPORTED */

--- NEW FILE: makljpeg.st ---
; Project file for Independent JPEG Group's software
;
; This project file is for Atari ST/STE/TT systems using Pure C or Turbo C.
; Thanks to Frank Moehle (Frank.Moehle at arbi.informatik.uni-oldenburg.de),
; Dr. B. Setzepfandt (bernd at gina.uni-muenster.de),
; and Guido Vollbeding (guivol at esc.de).
;
; To use this file, rename it to libjpeg.prj.
; Read installation instructions before trying to make the program!
;
;
;      * * * Output file * * *
libjpeg.lib
;
; * * * COMPILER OPTIONS * * *  
.C[-P]        ; absolute calls
.C[-M]        ; and no string merging, folks
.C[-w-cln]    ; no "constant is long" warnings
.C[-w-par]    ; no "parameter xxxx unused"
.C[-w-rch]    ; no "unreachable code"
.C[-wsig]     ; warn if significant digits may be lost
.L[-J]        ; link new Obj-format (so we get a library)
=
; * * * * List of modules * * * * 
jcapimin.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcapistd.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jccoefct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jccolor.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcdctmgr.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jchuff.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jchuff.h)
jcinit.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcmainct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcmarker.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcmaster.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcomapi.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcparam.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcphuff.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jchuff.h)
jcprepct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jcsample.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jctrans.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdapimin.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdapistd.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdatadst.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h)
jdatasrc.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jerror.h)
jdcoefct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdcolor.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jddctmgr.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jdhuff.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdhuff.h)
jdinput.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdmainct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdmarker.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdmaster.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdmerge.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdphuff.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdhuff.h)
jdpostct.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdsample.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jdtrans.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jerror.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jversion.h,jerror.h)
jfdctflt.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jfdctfst.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jfdctint.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jidctflt.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jidctfst.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jidctint.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jidctred.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jdct.h)
jquant1.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jquant2.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jutils.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h)
jmemmgr.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jmemsys.h)
jmemansi.c	(jinclude.h,jconfig.h,jpeglib.h,jmorecfg.h,jpegint.h,jerror.h,jmemsys.h)

--- NEW FILE: jcinit.c ---
/*
 * jcinit.c
 *
 * Copyright (C) 1991-1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains initialization logic for the JPEG compressor.
 * This routine is in charge of selecting the modules to be executed and
 * making an initialization call to each one.
 *
 * Logically, this code belongs in jcmaster.c.  It's split out because
 * linking this routine implies linking the entire compression library.
 * For a transcoding-only application, we want to be able to use jcmaster.c
 * without linking in the whole library.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/*
 * Master selection of compression modules.
 * This is done once at the start of processing an image.  We determine
 * which modules will be used and give them appropriate initialization calls.
 */

GLOBAL(void)
jinit_compress_master (j_compress_ptr cinfo)
{
  /* Initialize master control (includes parameter checking/processing) */
  jinit_c_master_control(cinfo, FALSE /* full compression */);

  /* Preprocessing */
  if (! cinfo->raw_data_in) {
    jinit_color_converter(cinfo);
    jinit_downsampler(cinfo);
    jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */);
  }
  /* Forward DCT */
  jinit_forward_dct(cinfo);
  /* Entropy encoding: either Huffman or arithmetic coding. */
  if (cinfo->arith_code) {
    ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
  } else {
    if (cinfo->progressive_mode) {
#ifdef C_PROGRESSIVE_SUPPORTED
      jinit_phuff_encoder(cinfo);
#else
      ERREXIT(cinfo, JERR_NOT_COMPILED);
#endif
    } else
      jinit_huff_encoder(cinfo);
  }

  /* Need a full-image coefficient buffer in any multi-pass mode. */
  jinit_c_coef_controller(cinfo,
		(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding));
  jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */);

  jinit_marker_writer(cinfo);

  /* We can now tell the memory manager to allocate virtual arrays. */
  (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);

  /* Write the datastream header (SOI) immediately.
   * Frame and scan headers are postponed till later.
   * This lets application insert special markers after the SOI.
   */
  (*cinfo->marker->write_file_header) (cinfo);
}

--- NEW FILE: rdrle.c ---
/*
 * rdrle.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to read input images in Utah RLE format.
 * The Utah Raster Toolkit library is required (version 3.1 or later).
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume input from
 * an ordinary stdio stream.  They further assume that reading begins
 * at the start of the file; start_input may need work if the
 * user interface has already read some data (e.g., to determine that
 * the file is indeed RLE format).
 *
 * Based on code contributed by Mike Lijewski,
 * with updates from Robert Hutchinson.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef RLE_SUPPORTED

/* rle.h is provided by the Utah Raster Toolkit. */

#include <rle.h>

/*
 * We assume that JSAMPLE has the same representation as rle_pixel,
 * to wit, "unsigned char".  Hence we can't cope with 12- or 16-bit samples.
 */

#if BITS_IN_JSAMPLE != 8
  Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif

/*
 * We support the following types of RLE files:
 *   
 *   GRAYSCALE   - 8 bits, no colormap
 *   MAPPEDGRAY  - 8 bits, 1 channel colomap
 *   PSEUDOCOLOR - 8 bits, 3 channel colormap
 *   TRUECOLOR   - 24 bits, 3 channel colormap
 *   DIRECTCOLOR - 24 bits, no colormap
 *
 * For now, we ignore any alpha channel in the image.
 */

typedef enum
  { GRAYSCALE, MAPPEDGRAY, PSEUDOCOLOR, TRUECOLOR, DIRECTCOLOR } rle_kind;


/*
 * Since RLE stores scanlines bottom-to-top, we have to invert the image
 * to conform to JPEG's top-to-bottom order.  To do this, we read the
 * incoming image into a virtual array on the first get_pixel_rows call,
 * then fetch the required row from the virtual array on subsequent calls.
 */

typedef struct _rle_source_struct * rle_source_ptr;

typedef struct _rle_source_struct {
  struct cjpeg_source_struct pub; /* public fields */

  rle_kind visual;              /* actual type of input file */
  jvirt_sarray_ptr image;       /* virtual array to hold the image */
  JDIMENSION row;		/* current row # in the virtual array */
  rle_hdr header;               /* Input file information */
  rle_pixel** rle_row;          /* holds a row returned by rle_getrow() */

} rle_source_struct;


/*
 * Read the file header; return image size and component count.
 */

METHODDEF(void)
start_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  rle_source_ptr source = (rle_source_ptr) sinfo;
  JDIMENSION width, height;
#ifdef PROGRESS_REPORT
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
#endif

  /* Use RLE library routine to get the header info */
  source->header = *rle_hdr_init(NULL);
  source->header.rle_file = source->pub.input_file;
  switch (rle_get_setup(&(source->header))) {
  case RLE_SUCCESS:
    /* A-OK */
    break;
  case RLE_NOT_RLE:
    ERREXIT(cinfo, JERR_RLE_NOT);
    break;
  case RLE_NO_SPACE:
    ERREXIT(cinfo, JERR_RLE_MEM);
    break;
  case RLE_EMPTY:
    ERREXIT(cinfo, JERR_RLE_EMPTY);
    break;
  case RLE_EOF:
    ERREXIT(cinfo, JERR_RLE_EOF);
    break;
  default:
    ERREXIT(cinfo, JERR_RLE_BADERROR);
    break;
  }

  /* Figure out what we have, set private vars and return values accordingly */
  
  width  = source->header.xmax - source->header.xmin + 1;
  height = source->header.ymax - source->header.ymin + 1;
  source->header.xmin = 0;		/* realign horizontally */
  source->header.xmax = width-1;

  cinfo->image_width      = width;
  cinfo->image_height     = height;
  cinfo->data_precision   = 8;  /* we can only handle 8 bit data */

  if (source->header.ncolors == 1 && source->header.ncmap == 0) {
    source->visual     = GRAYSCALE;
    TRACEMS2(cinfo, 1, JTRC_RLE_GRAY, width, height);
  } else if (source->header.ncolors == 1 && source->header.ncmap == 1) {
    source->visual     = MAPPEDGRAY;
    TRACEMS3(cinfo, 1, JTRC_RLE_MAPGRAY, width, height,
             1 << source->header.cmaplen);
  } else if (source->header.ncolors == 1 && source->header.ncmap == 3) {
    source->visual     = PSEUDOCOLOR;
    TRACEMS3(cinfo, 1, JTRC_RLE_MAPPED, width, height,
	     1 << source->header.cmaplen);
  } else if (source->header.ncolors == 3 && source->header.ncmap == 3) {
    source->visual     = TRUECOLOR;
    TRACEMS3(cinfo, 1, JTRC_RLE_FULLMAP, width, height,
	     1 << source->header.cmaplen);
  } else if (source->header.ncolors == 3 && source->header.ncmap == 0) {
    source->visual     = DIRECTCOLOR;
    TRACEMS2(cinfo, 1, JTRC_RLE, width, height);
  } else
    ERREXIT(cinfo, JERR_RLE_UNSUPPORTED);
  
  if (source->visual == GRAYSCALE || source->visual == MAPPEDGRAY) {
    cinfo->in_color_space   = JCS_GRAYSCALE;
    cinfo->input_components = 1;
  } else {
    cinfo->in_color_space   = JCS_RGB;
    cinfo->input_components = 3;
  }

  /*
   * A place to hold each scanline while it's converted.
   * (GRAYSCALE scanlines don't need converting)
   */
  if (source->visual != GRAYSCALE) {
    source->rle_row = (rle_pixel**) (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       (JDIMENSION) width, (JDIMENSION) cinfo->input_components);
  }

  /* request a virtual array to hold the image */
  source->image = (*cinfo->mem->request_virt_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
     (JDIMENSION) (width * source->header.ncolors),
     (JDIMENSION) height, (JDIMENSION) 1);

#ifdef PROGRESS_REPORT
  if (progress != NULL) {
    /* count file input as separate pass */
    progress->total_extra_passes++;
  }
#endif

  source->pub.buffer_height = 1;
}


/*
 * Read one row of pixels.
 * Called only after load_image has read the image into the virtual array.
 * Used for GRAYSCALE, MAPPEDGRAY, TRUECOLOR, and DIRECTCOLOR images.
 */

METHODDEF(JDIMENSION)
get_rle_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  rle_source_ptr source = (rle_source_ptr) sinfo;

  source->row--;
  source->pub.buffer = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE);

  return 1;
}

/*
 * Read one row of pixels.
 * Called only after load_image has read the image into the virtual array.
 * Used for PSEUDOCOLOR images.
 */

METHODDEF(JDIMENSION)
get_pseudocolor_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  rle_source_ptr source = (rle_source_ptr) sinfo;
  JSAMPROW src_row, dest_row;
  JDIMENSION col;
  rle_map *colormap;
  int val;

  colormap = source->header.cmap;
  dest_row = source->pub.buffer[0];
  source->row--;
  src_row = * (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, source->image, source->row, (JDIMENSION) 1, FALSE);

  for (col = cinfo->image_width; col > 0; col--) {
    val = GETJSAMPLE(*src_row++);
    *dest_row++ = (JSAMPLE) (colormap[val      ] >> 8);
    *dest_row++ = (JSAMPLE) (colormap[val + 256] >> 8);
    *dest_row++ = (JSAMPLE) (colormap[val + 512] >> 8);
  }

  return 1;
}


/*
 * Load the image into a virtual array.  We have to do this because RLE
 * files start at the lower left while the JPEG standard has them starting
 * in the upper left.  This is called the first time we want to get a row
 * of input.  What we do is load the RLE data into the array and then call
 * the appropriate routine to read one row from the array.  Before returning,
 * we set source->pub.get_pixel_rows so that subsequent calls go straight to
 * the appropriate row-reading routine.
 */

METHODDEF(JDIMENSION)
load_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  rle_source_ptr source = (rle_source_ptr) sinfo;
  JDIMENSION row, col;
  JSAMPROW  scanline, red_ptr, green_ptr, blue_ptr;
  rle_pixel **rle_row;
  rle_map *colormap;
  char channel;
#ifdef PROGRESS_REPORT
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
#endif

  colormap = source->header.cmap;
  rle_row = source->rle_row;

  /* Read the RLE data into our virtual array.
   * We assume here that (a) rle_pixel is represented the same as JSAMPLE,
   * and (b) we are not on a machine where FAR pointers differ from regular.
   */
  RLE_CLR_BIT(source->header, RLE_ALPHA); /* don't read the alpha channel */

#ifdef PROGRESS_REPORT
  if (progress != NULL) {
    progress->pub.pass_limit = cinfo->image_height;
    progress->pub.pass_counter = 0;
    (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
  }
#endif

  switch (source->visual) {

  case GRAYSCALE:
  case PSEUDOCOLOR:
    for (row = 0; row < cinfo->image_height; row++) {
      rle_row = (rle_pixel **) (*cinfo->mem->access_virt_sarray)
         ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
      rle_getrow(&source->header, rle_row);
#ifdef PROGRESS_REPORT
      if (progress != NULL) {
        progress->pub.pass_counter++;
        (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
      }
#endif
    }
    break;

  case MAPPEDGRAY:
  case TRUECOLOR:
    for (row = 0; row < cinfo->image_height; row++) {
      scanline = * (*cinfo->mem->access_virt_sarray)
        ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
      rle_row = source->rle_row;
      rle_getrow(&source->header, rle_row);

      for (col = 0; col < cinfo->image_width; col++) {
        for (channel = 0; channel < source->header.ncolors; channel++) {
          *scanline++ = (JSAMPLE)
            (colormap[GETJSAMPLE(rle_row[channel][col]) + 256 * channel] >> 8);
        }
      }

#ifdef PROGRESS_REPORT
      if (progress != NULL) {
        progress->pub.pass_counter++;
        (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
      }
#endif
    }
    break;

  case DIRECTCOLOR:
    for (row = 0; row < cinfo->image_height; row++) {
      scanline = * (*cinfo->mem->access_virt_sarray)
        ((j_common_ptr) cinfo, source->image, row, (JDIMENSION) 1, TRUE);
      rle_getrow(&source->header, rle_row);

      red_ptr   = rle_row[0];
      green_ptr = rle_row[1];
      blue_ptr  = rle_row[2];

      for (col = cinfo->image_width; col > 0; col--) {
        *scanline++ = *red_ptr++;
        *scanline++ = *green_ptr++;
        *scanline++ = *blue_ptr++;
      }

#ifdef PROGRESS_REPORT
      if (progress != NULL) {
        progress->pub.pass_counter++;
        (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
      }
#endif
    }
  }

#ifdef PROGRESS_REPORT
  if (progress != NULL)
    progress->completed_extra_passes++;
#endif

  /* Set up to call proper row-extraction routine in future */
  if (source->visual == PSEUDOCOLOR) {
    source->pub.buffer = source->rle_row;
    source->pub.get_pixel_rows = get_pseudocolor_row;
  } else {
    source->pub.get_pixel_rows = get_rle_row;
  }
  source->row = cinfo->image_height;

  /* And fetch the topmost (bottommost) row */
  return (*source->pub.get_pixel_rows) (cinfo, sinfo);   
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_input_rle (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  /* no work */
}


/*
 * The module selection routine for RLE format input.
 */

GLOBAL(cjpeg_source_ptr)
jinit_read_rle (j_compress_ptr cinfo)
{
  rle_source_ptr source;

  /* Create module interface object */
  source = (rle_source_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                  SIZEOF(rle_source_struct));
  /* Fill in method ptrs */
  source->pub.start_input = start_input_rle;
  source->pub.finish_input = finish_input_rle;
  source->pub.get_pixel_rows = load_image;

  return (cjpeg_source_ptr) source;
}

#endif /* RLE_SUPPORTED */

--- NEW FILE: config.sub ---
#! /bin/sh
# Configuration validation subroutine script, version 1.1.
#   Copyright (C) 1991, 92, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
# This file is (in principle) common to ALL GNU software.
# The presence of a machine in this file suggests that SOME GNU software
# can handle that machine.  It does not imply ALL GNU software can.
#
# This file is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA 02111-1307, USA.

# As a special exception to the GNU General Public License, if you
# distribute this file as part of a program that contains a
# configuration script generated by Autoconf, you may include it under
# the same distribution terms that you use for the rest of that program.

# Configuration subroutine to validate and canonicalize a configuration type.
# Supply the specified configuration type as an argument.
# If it is invalid, we print an error message on stderr and exit with code 1.
# Otherwise, we print the canonical config type on stdout and succeed.

# This file is supposed to be the same for all GNU packages
# and recognize all the CPU types, system types and aliases
# that are meaningful with *any* GNU software.
# Each package is responsible for reporting which valid configurations
# it does not support.  The user should be able to distinguish
# a failure to support a valid configuration from a meaningless
# configuration.

# The goal of this file is to map all the various variations of a given
# machine specification into a single specification in the form:
#	CPU_TYPE-MANUFACTURER-OPERATING_SYSTEM
# or in some cases, the newer four-part form:
#	CPU_TYPE-MANUFACTURER-KERNEL-OPERATING_SYSTEM
# It is wrong to echo any other type of specification.

if [ x$1 = x ]
then
	echo Configuration name missing. 1>&2
	echo "Usage: $0 CPU-MFR-OPSYS" 1>&2
	echo "or     $0 ALIAS" 1>&2
	echo where ALIAS is a recognized configuration type. 1>&2
	exit 1
fi

# First pass through any local machine types.
case $1 in
	*local*)
		echo $1
		exit 0
		;;
	*)
	;;
esac

# Separate what the user gave into CPU-COMPANY and OS or KERNEL-OS (if any).
# Here we must recognize all the valid KERNEL-OS combinations.
maybe_os=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\2/'`
case $maybe_os in
  linux-gnu*)
    os=-$maybe_os
    basic_machine=`echo $1 | sed 's/^\(.*\)-\([^-]*-[^-]*\)$/\1/'`
    ;;
  *)
    basic_machine=`echo $1 | sed 's/-[^-]*$//'`
    if [ $basic_machine != $1 ]
    then os=`echo $1 | sed 's/.*-/-/'`
    else os=; fi
    ;;
esac

### Let's recognize common machines as not being operating systems so
### that things like config.sub decstation-3100 work.  We also
### recognize some manufacturers as not being operating systems, so we
### can provide default operating systems below.
case $os in
	-sun*os*)
		# Prevent following clause from handling this invalid input.
		;;
	-dec* | -mips* | -sequent* | -encore* | -pc532* | -sgi* | -sony* | \
	-att* | -7300* | -3300* | -delta* | -motorola* | -sun[234]* | \
	-unicom* | -ibm* | -next | -hp | -isi* | -apollo | -altos* | \
	-convergent* | -ncr* | -news | -32* | -3600* | -3100* | -hitachi* |\
	-c[123]* | -convex* | -sun | -crds | -omron* | -dg | -ultra | -tti* | \
	-harris | -dolphin | -highlevel | -gould | -cbm | -ns | -masscomp | \
	-apple)
		os=
		basic_machine=$1
		;;
	-hiux*)
		os=-hiuxwe2
		;;
	-sco5)
		os=sco3.2v5
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco4)
		os=-sco3.2v4
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco3.2.[4-9]*)
		os=`echo $os | sed -e 's/sco3.2./sco3.2v/'`
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco3.2v[4-9]*)
		# Don't forget version if it is 3.2v4 or newer.
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-sco*)
		os=-sco3.2v2
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-isc)
		os=-isc2.2
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-clix*)
		basic_machine=clipper-intergraph
		;;
	-isc*)
		basic_machine=`echo $1 | sed -e 's/86-.*/86-pc/'`
		;;
	-lynx*)
		os=-lynxos
		;;
	-ptx*)
		basic_machine=`echo $1 | sed -e 's/86-.*/86-sequent/'`
		;;
	-windowsnt*)
		os=`echo $os | sed -e 's/windowsnt/winnt/'`
		;;
	-psos*)
		os=-psos
		;;
esac

# Decode aliases for certain CPU-COMPANY combinations.
case $basic_machine in
	# Recognize the basic CPU types without company name.
	# Some are omitted here because they have special meanings below.
	tahoe | i860 | m32r | m68k | m68000 | m88k | ns32k | arc | arm \
		| arme[lb] | pyramid | mn10200 | mn10300 \
		| tron | a29k | 580 | i960 | h8300 | hppa | hppa1.0 | hppa1.1 \
		| alpha | alphaev5 | alphaev56 | we32k | ns16k | clipper \
		| i370 | sh | powerpc | powerpcle | 1750a | dsp16xx | pdp11 \
		| mips64 | mipsel | mips64el | mips64orion | mips64orionel \
		| mipstx39 | mipstx39el \
		| sparc | sparclet | sparclite | sparc64 | v850)
		basic_machine=$basic_machine-unknown
		;;
	# We use `pc' rather than `unknown'
	# because (1) that's what they normally are, and
	# (2) the word "unknown" tends to confuse beginning users.
	i[3456]86)
	  basic_machine=$basic_machine-pc
	  ;;
	# Object if more than one company name word.
	*-*-*)
		echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
		exit 1
		;;
	# Recognize the basic CPU types with company name.
	vax-* | tahoe-* | i[3456]86-* | i860-* | m32r-* | m68k-* | m68000-* \
	      | m88k-* | sparc-* | ns32k-* | fx80-* | arc-* | arm-* | c[123]* \
	      | mips-* | pyramid-* | tron-* | a29k-* | romp-* | rs6000-* \
	      | power-* | none-* | 580-* | cray2-* | h8300-* | i960-* \
	      | xmp-* | ymp-* | hppa-* | hppa1.0-* | hppa1.1-* \
	      | alpha-* | alphaev5-* | alphaev56-* | we32k-* | cydra-* \
	      | ns16k-* | pn-* | np1-* | xps100-* | clipper-* | orion-* \
	      | sparclite-* | pdp11-* | sh-* | powerpc-* | powerpcle-* \
	      | sparc64-* | mips64-* | mipsel-* \
	      | mips64el-* | mips64orion-* | mips64orionel-*  \
	      | mipstx39-* | mipstx39el-* \
	      | f301-*)
		;;
	# Recognize the various machine names and aliases which stand
	# for a CPU type and a company and sometimes even an OS.
	3b1 | 7300 | 7300-att | att-7300 | pc7300 | safari | unixpc)
		basic_machine=m68000-att
		;;
	3b*)
		basic_machine=we32k-att
		;;
	alliant | fx80)
		basic_machine=fx80-alliant
		;;
	altos | altos3068)
		basic_machine=m68k-altos
		;;
	am29k)
		basic_machine=a29k-none
		os=-bsd
		;;
	amdahl)
		basic_machine=580-amdahl
		os=-sysv
		;;
	amiga | amiga-*)
		basic_machine=m68k-cbm
		;;
	amigaos | amigados)
		basic_machine=m68k-cbm
		os=-amigaos
		;;
	amigaunix | amix)
		basic_machine=m68k-cbm
		os=-sysv4
		;;
	apollo68)
		basic_machine=m68k-apollo
		os=-sysv
		;;
	aux)
		basic_machine=m68k-apple
		os=-aux
		;;
	balance)
		basic_machine=ns32k-sequent
		os=-dynix
		;;
	convex-c1)
		basic_machine=c1-convex
		os=-bsd
		;;
	convex-c2)
		basic_machine=c2-convex
		os=-bsd
		;;
	convex-c32)
		basic_machine=c32-convex
		os=-bsd
		;;
	convex-c34)
		basic_machine=c34-convex
		os=-bsd
		;;
	convex-c38)
		basic_machine=c38-convex
		os=-bsd
		;;
	cray | ymp)
		basic_machine=ymp-cray
		os=-unicos
		;;
	cray2)
		basic_machine=cray2-cray
		os=-unicos
		;;
	[ctj]90-cray)
		basic_machine=c90-cray
		os=-unicos
		;;
	crds | unos)
		basic_machine=m68k-crds
		;;
	da30 | da30-*)
		basic_machine=m68k-da30
		;;
	decstation | decstation-3100 | pmax | pmax-* | pmin | dec3100 | decstatn)
		basic_machine=mips-dec
		;;
	delta | 3300 | motorola-3300 | motorola-delta \
	      | 3300-motorola | delta-motorola)
		basic_machine=m68k-motorola
		;;
	delta88)
		basic_machine=m88k-motorola
		os=-sysv3
		;;
	dpx20 | dpx20-*)
		basic_machine=rs6000-bull
		os=-bosx
		;;
	dpx2* | dpx2*-bull)
		basic_machine=m68k-bull
		os=-sysv3
		;;
	ebmon29k)
		basic_machine=a29k-amd
		os=-ebmon
		;;
	elxsi)
		basic_machine=elxsi-elxsi
		os=-bsd
		;;
	encore | umax | mmax)
		basic_machine=ns32k-encore
		;;
	fx2800)
		basic_machine=i860-alliant
		;;
	genix)
		basic_machine=ns32k-ns
		;;
	gmicro)
		basic_machine=tron-gmicro
		os=-sysv
		;;
	h3050r* | hiux*)
		basic_machine=hppa1.1-hitachi
		os=-hiuxwe2
		;;
	h8300hms)
		basic_machine=h8300-hitachi
		os=-hms
		;;
	harris)
		basic_machine=m88k-harris
		os=-sysv3
		;;
	hp300-*)
		basic_machine=m68k-hp
		;;
	hp300bsd)
		basic_machine=m68k-hp
		os=-bsd
		;;
	hp300hpux)
		basic_machine=m68k-hp
		os=-hpux
		;;
	hp9k2[0-9][0-9] | hp9k31[0-9])
		basic_machine=m68000-hp
		;;
	hp9k3[2-9][0-9])
		basic_machine=m68k-hp
		;;
	hp9k7[0-9][0-9] | hp7[0-9][0-9] | hp9k8[0-9]7 | hp8[0-9]7)
		basic_machine=hppa1.1-hp
		;;
	hp9k8[0-9][0-9] | hp8[0-9][0-9])
		basic_machine=hppa1.0-hp
		;;
	hppa-next)
		os=-nextstep3
		;;
	i370-ibm* | ibm*)
		basic_machine=i370-ibm
		os=-mvs
		;;
# I'm not sure what "Sysv32" means.  Should this be sysv3.2?
	i[3456]86v32)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv32
		;;
	i[3456]86v4*)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv4
		;;
	i[3456]86v)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-sysv
		;;
	i[3456]86sol2)
		basic_machine=`echo $1 | sed -e 's/86.*/86-pc/'`
		os=-solaris2
		;;
	iris | iris4d)
		basic_machine=mips-sgi
		case $os in
		    -irix*)
			;;
		    *)
			os=-irix4
			;;
		esac
		;;
	isi68 | isi)
		basic_machine=m68k-isi
		os=-sysv
		;;
	m88k-omron*)
		basic_machine=m88k-omron
		;;
	magnum | m3230)
		basic_machine=mips-mips
		os=-sysv
		;;
	merlin)
		basic_machine=ns32k-utek
		os=-sysv
		;;
	miniframe)
		basic_machine=m68000-convergent
		;;
	mipsel*-linux*)
		basic_machine=mipsel-unknown
		os=-linux-gnu
		;;
	mips*-linux*)
		basic_machine=mips-unknown
		os=-linux-gnu
		;;
	mips3*-*)
		basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`
		;;
	mips3*)
		basic_machine=`echo $basic_machine | sed -e 's/mips3/mips64/'`-unknown
		;;
	ncr3000)
		basic_machine=i486-ncr
		os=-sysv4
		;;
	news | news700 | news800 | news900)
		basic_machine=m68k-sony
		os=-newsos
		;;
	news1000)
		basic_machine=m68030-sony
		os=-newsos
		;;
	news-3600 | risc-news)
		basic_machine=mips-sony
		os=-newsos
		;;
	next | m*-next )
		basic_machine=m68k-next
		case $os in
		    -nextstep* )
			;;
		    -ns2*)
		      os=-nextstep2
			;;
		    *)
		      os=-nextstep3
			;;
		esac
		;;
	nh3000)
		basic_machine=m68k-harris
		os=-cxux
		;;
	nh[45]000)
		basic_machine=m88k-harris
		os=-cxux
		;;
	nindy960)
		basic_machine=i960-intel
		os=-nindy
		;;
	np1)
		basic_machine=np1-gould
		;;
	pa-hitachi)
		basic_machine=hppa1.1-hitachi
		os=-hiuxwe2
		;;
	paragon)
		basic_machine=i860-intel
		os=-osf
		;;
	pbd)
		basic_machine=sparc-tti
		;;
	pbb)
		basic_machine=m68k-tti
		;;
        pc532 | pc532-*)
		basic_machine=ns32k-pc532
		;;
	pentium | p5)
		basic_machine=i586-intel
		;;
	pentiumpro | p6)
		basic_machine=i686-intel
		;;
	pentium-* | p5-*)
		basic_machine=i586-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	pentiumpro-* | p6-*)
		basic_machine=i686-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	k5)
		# We don't have specific support for AMD's K5 yet, so just call it a Pentium
		basic_machine=i586-amd
		;;
	nexen)
		# We don't have specific support for Nexgen yet, so just call it a Pentium
		basic_machine=i586-nexgen
		;;
	pn)
		basic_machine=pn-gould
		;;
	power)	basic_machine=rs6000-ibm
		;;
	ppc)	basic_machine=powerpc-unknown
	        ;;
	ppc-*)	basic_machine=powerpc-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ppcle | powerpclittle | ppc-le | powerpc-little)
		basic_machine=powerpcle-unknown
	        ;;
	ppcle-* | powerpclittle-*)
		basic_machine=powerpcle-`echo $basic_machine | sed 's/^[^-]*-//'`
		;;
	ps2)
		basic_machine=i386-ibm
		;;
	rm[46]00)
		basic_machine=mips-siemens
		;;
	rtpc | rtpc-*)
		basic_machine=romp-ibm
		;;
	sequent)
		basic_machine=i386-sequent
		;;
	sh)
		basic_machine=sh-hitachi
		os=-hms
		;;
	sps7)
		basic_machine=m68k-bull
		os=-sysv2
		;;
	spur)
		basic_machine=spur-unknown
		;;
	sun2)
		basic_machine=m68000-sun
		;;
	sun2os3)
		basic_machine=m68000-sun
		os=-sunos3
		;;
	sun2os4)
		basic_machine=m68000-sun
		os=-sunos4
		;;
	sun3os3)
		basic_machine=m68k-sun
		os=-sunos3
		;;
	sun3os4)
		basic_machine=m68k-sun
		os=-sunos4
		;;
	sun4os3)
		basic_machine=sparc-sun
		os=-sunos3
		;;
	sun4os4)
		basic_machine=sparc-sun
		os=-sunos4
		;;
	sun4sol2)
		basic_machine=sparc-sun
		os=-solaris2
		;;
	sun3 | sun3-*)
		basic_machine=m68k-sun
		;;
	sun4)
		basic_machine=sparc-sun
		;;
	sun386 | sun386i | roadrunner)
		basic_machine=i386-sun
		;;
	symmetry)
		basic_machine=i386-sequent
		os=-dynix
		;;
	tx39)
		basic_machine=mipstx39-unknown
		;;
	tx39el)
		basic_machine=mipstx39el-unknown
		;;
	tower | tower-32)
		basic_machine=m68k-ncr
		;;
	udi29k)
		basic_machine=a29k-amd
		os=-udi
		;;
	ultra3)
		basic_machine=a29k-nyu
		os=-sym1
		;;
	vaxv)
		basic_machine=vax-dec
		os=-sysv
		;;
	vms)
		basic_machine=vax-dec
		os=-vms
		;;
	vpp*|vx|vx-*)
               basic_machine=f301-fujitsu
               ;;
	vxworks960)
		basic_machine=i960-wrs
		os=-vxworks
		;;
	vxworks68)
		basic_machine=m68k-wrs
		os=-vxworks
		;;
	vxworks29k)
		basic_machine=a29k-wrs
		os=-vxworks
		;;
	xmp)
		basic_machine=xmp-cray
		os=-unicos
		;;
        xps | xps100)
		basic_machine=xps100-honeywell
		;;
	none)
		basic_machine=none-none
		os=-none
		;;

# Here we handle the default manufacturer of certain CPU types.  It is in
# some cases the only manufacturer, in others, it is the most popular.
	mips)
		if [ x$os = x-linux-gnu ]; then
			basic_machine=mips-unknown
		else
			basic_machine=mips-mips
		fi
		;;
	romp)
		basic_machine=romp-ibm
		;;
	rs6000)
		basic_machine=rs6000-ibm
		;;
	vax)
		basic_machine=vax-dec
		;;
	pdp11)
		basic_machine=pdp11-dec
		;;
	we32k)
		basic_machine=we32k-att
		;;
	sparc)
		basic_machine=sparc-sun
		;;
        cydra)
		basic_machine=cydra-cydrome
		;;
	orion)
		basic_machine=orion-highlevel
		;;
	orion105)
		basic_machine=clipper-highlevel
		;;
	*)
		echo Invalid configuration \`$1\': machine \`$basic_machine\' not recognized 1>&2
		exit 1
		;;
esac

# Here we canonicalize certain aliases for manufacturers.
case $basic_machine in
	*-digital*)
		basic_machine=`echo $basic_machine | sed 's/digital.*/dec/'`
		;;
	*-commodore*)
		basic_machine=`echo $basic_machine | sed 's/commodore.*/cbm/'`
		;;
	*)
		;;
esac

# Decode manufacturer-specific aliases for certain operating systems.

if [ x"$os" != x"" ]
then
case $os in
        # First match some system type aliases
        # that might get confused with valid system types.
	# -solaris* is a basic system type, with this one exception.
	-solaris1 | -solaris1.*)
		os=`echo $os | sed -e 's|solaris1|sunos4|'`
		;;
	-solaris)
		os=-solaris2
		;;
	-svr4*)
		os=-sysv4
		;;
	-unixware*)
		os=-sysv4.2uw
		;;
	-gnu/linux*)
		os=`echo $os | sed -e 's|gnu/linux|linux-gnu|'`
		;;
	# First accept the basic system types.
	# The portable systems comes first.
	# Each alternative MUST END IN A *, to match a version number.
	# -sysv* is not here because it comes later, after sysvr4.
	-gnu* | -bsd* | -mach* | -minix* | -genix* | -ultrix* | -irix* \
	      | -*vms* | -sco* | -esix* | -isc* | -aix* | -sunos | -sunos[34]*\
	      | -hpux* | -unos* | -osf* | -luna* | -dgux* | -solaris* | -sym* \
	      | -amigaos* | -amigados* | -msdos* | -newsos* | -unicos* | -aof* \
	      | -aos* \
	      | -nindy* | -vxsim* | -vxworks* | -ebmon* | -hms* | -mvs* \
	      | -clix* | -riscos* | -uniplus* | -iris* | -rtu* | -xenix* \
	      | -hiux* | -386bsd* | -netbsd* | -openbsd* | -freebsd* | -riscix* \
	      | -lynxos* | -bosx* | -nextstep* | -cxux* | -aout* | -elf* \
	      | -ptx* | -coff* | -ecoff* | -winnt* | -domain* | -vsta* \
	      | -udi* | -eabi* | -lites* | -ieee* | -go32* | -aux* \
	      | -cygwin32* | -pe* | -psos* | -moss* | -proelf* | -rtems* \
	      | -mingw32* | -linux-gnu* | -uxpv*)
	# Remember, each alternative MUST END IN *, to match a version number.
		;;
	-linux*)
		os=`echo $os | sed -e 's|linux|linux-gnu|'`
		;;
	-sunos5*)
		os=`echo $os | sed -e 's|sunos5|solaris2|'`
		;;
	-sunos6*)
		os=`echo $os | sed -e 's|sunos6|solaris3|'`
		;;
	-osfrose*)
		os=-osfrose
		;;
	-osf*)
		os=-osf
		;;
	-utek*)
		os=-bsd
		;;
	-dynix*)
		os=-bsd
		;;
	-acis*)
		os=-aos
		;;
	-ctix* | -uts*)
		os=-sysv
		;;
	-ns2 )
	        os=-nextstep2
		;;
	# Preserve the version number of sinix5.
	-sinix5.*)
		os=`echo $os | sed -e 's|sinix|sysv|'`
		;;
	-sinix*)
		os=-sysv4
		;;
	-triton*)
		os=-sysv3
		;;
	-oss*)
		os=-sysv3
		;;
	-svr4)
		os=-sysv4
		;;
	-svr3)
		os=-sysv3
		;;
	-sysvr4)
		os=-sysv4
		;;
	# This must come after -sysvr4.
	-sysv*)
		;;
	-xenix)
		os=-xenix
		;;
	-none)
		;;
	*)
		# Get rid of the `-' at the beginning of $os.
		os=`echo $os | sed 's/[^-]*-//'`
		echo Invalid configuration \`$1\': system \`$os\' not recognized 1>&2
		exit 1
		;;
esac
else

# Here we handle the default operating systems that come with various machines.
# The value should be what the vendor currently ships out the door with their
# machine or put another way, the most popular os provided with the machine.

# Note that if you're going to try to match "-MANUFACTURER" here (say,
# "-sun"), then you have to tell the case statement up towards the top
# that MANUFACTURER isn't an operating system.  Otherwise, code above
# will signal an error saying that MANUFACTURER isn't an operating
# system, and we'll never get to this point.

case $basic_machine in
	*-acorn)
		os=-riscix1.2
		;;
	arm*-semi)
		os=-aout
		;;
        pdp11-*)
		os=-none
		;;
	*-dec | vax-*)
		os=-ultrix4.2
		;;
	m68*-apollo)
		os=-domain
		;;
	i386-sun)
		os=-sunos4.0.2
		;;
	m68000-sun)
		os=-sunos3
		# This also exists in the configure program, but was not the
		# default.
		# os=-sunos4
		;;
	*-tti)	# must be before sparc entry or we get the wrong os.
		os=-sysv3
		;;
	sparc-* | *-sun)
		os=-sunos4.1.1
		;;
	*-ibm)
		os=-aix
		;;
	*-hp)
		os=-hpux
		;;
	*-hitachi)
		os=-hiux
		;;
	i860-* | *-att | *-ncr | *-altos | *-motorola | *-convergent)
		os=-sysv
		;;
	*-cbm)
		os=-amigaos
		;;
	*-dg)
		os=-dgux
		;;
	*-dolphin)
		os=-sysv3
		;;
	m68k-ccur)
		os=-rtu
		;;
	m88k-omron*)
		os=-luna
		;;
	*-next )
		os=-nextstep
		;;
	*-sequent)
		os=-ptx
		;;
	*-crds)
		os=-unos
		;;
	*-ns)
		os=-genix
		;;
	i370-*)
		os=-mvs
		;;
	*-next)
		os=-nextstep3
		;;
        *-gould)
		os=-sysv
		;;
        *-highlevel)
		os=-bsd
		;;
	*-encore)
		os=-bsd
		;;
        *-sgi)
		os=-irix
		;;
        *-siemens)
		os=-sysv4
		;;
	*-masscomp)
		os=-rtu
		;;
	f301-fujitsu)
		os=-uxpv
		;;
	*)
		os=-none
		;;
esac
fi

# Here we handle the case where we know the os, and the CPU type, but not the
# manufacturer.  We pick the logical manufacturer.
vendor=unknown
case $basic_machine in
	*-unknown)
		case $os in
			-riscix*)
				vendor=acorn
				;;
			-sunos*)
				vendor=sun
				;;
			-aix*)
				vendor=ibm
				;;
			-hpux*)
				vendor=hp
				;;
			-hiux*)
				vendor=hitachi
				;;
			-unos*)
				vendor=crds
				;;
			-dgux*)
				vendor=dg
				;;
			-luna*)
				vendor=omron
				;;
			-genix*)
				vendor=ns
				;;
			-mvs*)
				vendor=ibm
				;;
			-ptx*)
				vendor=sequent
				;;
			-vxsim* | -vxworks*)
				vendor=wrs
				;;
			-aux*)
				vendor=apple
				;;
		esac
		basic_machine=`echo $basic_machine | sed "s/unknown/$vendor/"`
		;;
esac

echo $basic_machine$os

--- NEW FILE: libjpeg.doc ---
USING THE IJG JPEG LIBRARY

Copyright (C) 1994-1998, Thomas G. Lane.
This file is part of the Independent JPEG Group's software.
For conditions of distribution and use, see the accompanying README file.


This file describes how to use the IJG JPEG library within an application
program.  Read it if you want to write a program that uses the library.

The file example.c provides heavily commented skeleton code for calling the
JPEG library.  Also see jpeglib.h (the include file to be used by application
programs) for full details about data structures and function parameter lists.
The library source code, of course, is the ultimate reference.

Note that there have been *major* changes from the application interface
presented by IJG version 4 and earlier versions.  The old design had several
inherent limitations, and it had accumulated a lot of cruft as we added
features while trying to minimize application-interface changes.  We have
[...2967 lines suppressed...]
deal for your needs.  (If you are tight on space, you could reduce the sizes
of the I/O buffers allocated by jdatasrc.c and jdatadst.c, say from 4K to
1K.  Another possibility is to move the error message table to far memory;
this should be doable with only localized hacking on jerror.c.)

About 2K of the near heap space is "permanent" memory that will not be
released until you destroy the JPEG object.  This is only an issue if you
save a JPEG object between compression or decompression operations.

Far data space may also be a tight resource when you are dealing with large
images.  The most memory-intensive case is decompression with two-pass color
quantization, or single-pass quantization to an externally supplied color
map.  This requires a 128Kb color lookup table plus strip buffers amounting
to about 40 bytes per column for typical sampling ratios (eg, about 25600
bytes for a 640-pixel-wide image).  You may not be able to process wide
images if you have large data structures of your own.

Of course, all of these concerns vanish if you use a 32-bit flat-memory-model
compiler, such as DJGPP or Watcom C.  We highly recommend flat model if you
can use it; the JPEG library is significantly faster in flat model.

--- NEW FILE: rdbmp.c ---
/*
 * rdbmp.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains routines to read input images in Microsoft "BMP"
 * format (MS Windows 3.x, OS/2 1.x, and OS/2 2.x flavors).
 * Currently, only 8-bit and 24-bit images are supported, not 1-bit or
 * 4-bit (feeding such low-depth images into JPEG would be silly anyway).
 * Also, we don't support RLE-compressed files.
 *
 * These routines may need modification for non-Unix environments or
 * specialized applications.  As they stand, they assume input from
 * an ordinary stdio stream.  They further assume that reading begins
 * at the start of the file; start_input may need work if the
 * user interface has already read some data (e.g., to determine that
 * the file is indeed BMP format).
 *
 * This code contributed by James Arthur Boucher.
 */

#include "cdjpeg.h"		/* Common decls for cjpeg/djpeg applications */

#ifdef BMP_SUPPORTED


/* Macros to deal with unsigned chars as efficiently as compiler allows */

#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char U_CHAR;
#define UCH(x)	((int) (x))
#else /* !HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char U_CHAR;
#define UCH(x)	((int) (x))
#else
typedef char U_CHAR;
#define UCH(x)	((int) (x) & 0xFF)
#endif
#endif /* HAVE_UNSIGNED_CHAR */


#define	ReadOK(file,buffer,len)	(JFREAD(file,buffer,len) == ((size_t) (len)))


/* Private version of data source object */

typedef struct _bmp_source_struct * bmp_source_ptr;

typedef struct _bmp_source_struct {
  struct cjpeg_source_struct pub; /* public fields */

  j_compress_ptr cinfo;		/* back link saves passing separate parm */

  JSAMPARRAY colormap;		/* BMP colormap (converted to my format) */

  jvirt_sarray_ptr whole_image;	/* Needed to reverse row order */
  JDIMENSION source_row;	/* Current source row number */
  JDIMENSION row_width;		/* Physical width of scanlines in file */

  int bits_per_pixel;		/* remembers 8- or 24-bit format */
} bmp_source_struct;


LOCAL(int)
read_byte (bmp_source_ptr sinfo)
/* Read next byte from BMP file */
{
  register FILE *infile = sinfo->pub.input_file;
  register int c;

  if ((c = getc(infile)) == EOF)
    ERREXIT(sinfo->cinfo, JERR_INPUT_EOF);
  return c;
}


LOCAL(void)
read_colormap (bmp_source_ptr sinfo, int cmaplen, int mapentrysize)
/* Read the colormap from a BMP file */
{
  int i;

  switch (mapentrysize) {
  case 3:
    /* BGR format (occurs in OS/2 files) */
    for (i = 0; i < cmaplen; i++) {
      sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
      sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
      sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
    }
    break;
  case 4:
    /* BGR0 format (occurs in MS Windows files) */
    for (i = 0; i < cmaplen; i++) {
      sinfo->colormap[2][i] = (JSAMPLE) read_byte(sinfo);
      sinfo->colormap[1][i] = (JSAMPLE) read_byte(sinfo);
      sinfo->colormap[0][i] = (JSAMPLE) read_byte(sinfo);
      (void) read_byte(sinfo);
    }
    break;
  default:
    ERREXIT(sinfo->cinfo, JERR_BMP_BADCMAP);
    break;
  }
}


/*
 * Read one row of pixels.
 * The image has been read into the whole_image array, but is otherwise
 * unprocessed.  We must read it out in top-to-bottom row order, and if
 * it is an 8-bit image, we must expand colormapped pixels to 24bit format.
 */

METHODDEF(JDIMENSION)
get_8bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 8-bit colormap indexes */
{
  bmp_source_ptr source = (bmp_source_ptr) sinfo;
  register JSAMPARRAY colormap = source->colormap;
  JSAMPARRAY image_ptr;
  register int t;
  register JSAMPROW inptr, outptr;
  register JDIMENSION col;

  /* Fetch next row from virtual array */
  source->source_row--;
  image_ptr = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, source->whole_image,
     source->source_row, (JDIMENSION) 1, FALSE);

  /* Expand the colormap indexes to real data */
  inptr = image_ptr[0];
  outptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    t = GETJSAMPLE(*inptr++);
    *outptr++ = colormap[0][t];	/* can omit GETJSAMPLE() safely */
    *outptr++ = colormap[1][t];
    *outptr++ = colormap[2][t];
  }

  return 1;
}


METHODDEF(JDIMENSION)
get_24bit_row (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading 24-bit pixels */
{
  bmp_source_ptr source = (bmp_source_ptr) sinfo;
  JSAMPARRAY image_ptr;
  register JSAMPROW inptr, outptr;
  register JDIMENSION col;

  /* Fetch next row from virtual array */
  source->source_row--;
  image_ptr = (*cinfo->mem->access_virt_sarray)
    ((j_common_ptr) cinfo, source->whole_image,
     source->source_row, (JDIMENSION) 1, FALSE);

  /* Transfer data.  Note source values are in BGR order
   * (even though Microsoft's own documents say the opposite).
   */
  inptr = image_ptr[0];
  outptr = source->pub.buffer[0];
  for (col = cinfo->image_width; col > 0; col--) {
    outptr[2] = *inptr++;	/* can omit GETJSAMPLE() safely */
    outptr[1] = *inptr++;
    outptr[0] = *inptr++;
    outptr += 3;
  }

  return 1;
}


/*
 * This method loads the image into whole_image during the first call on
 * get_pixel_rows.  The get_pixel_rows pointer is then adjusted to call
 * get_8bit_row or get_24bit_row on subsequent calls.
 */

METHODDEF(JDIMENSION)
preload_image (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  bmp_source_ptr source = (bmp_source_ptr) sinfo;
  register FILE *infile = source->pub.input_file;
  register int c;
  register JSAMPROW out_ptr;
  JSAMPARRAY image_ptr;
  JDIMENSION row, col;
  cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;

  /* Read the data into a virtual array in input-file row order. */
  for (row = 0; row < cinfo->image_height; row++) {
    if (progress != NULL) {
      progress->pub.pass_counter = (long) row;
      progress->pub.pass_limit = (long) cinfo->image_height;
      (*progress->pub.progress_monitor) ((j_common_ptr) cinfo);
    }
    image_ptr = (*cinfo->mem->access_virt_sarray)
      ((j_common_ptr) cinfo, source->whole_image,
       row, (JDIMENSION) 1, TRUE);
    out_ptr = image_ptr[0];
    for (col = source->row_width; col > 0; col--) {
      /* inline copy of read_byte() for speed */
      if ((c = getc(infile)) == EOF)
	ERREXIT(cinfo, JERR_INPUT_EOF);
      *out_ptr++ = (JSAMPLE) c;
    }
  }
  if (progress != NULL)
    progress->completed_extra_passes++;

  /* Set up to read from the virtual array in top-to-bottom order */
  switch (source->bits_per_pixel) {
  case 8:
    source->pub.get_pixel_rows = get_8bit_row;
    break;
  case 24:
    source->pub.get_pixel_rows = get_24bit_row;
    break;
  default:
    ERREXIT(cinfo, JERR_BMP_BADDEPTH);
  }
  source->source_row = cinfo->image_height;

  /* And read the first row */
  return (*source->pub.get_pixel_rows) (cinfo, sinfo);
}


/*
 * Read the file header; return image size and component count.
 */

METHODDEF(void)
start_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  bmp_source_ptr source = (bmp_source_ptr) sinfo;
  U_CHAR bmpfileheader[14];
  U_CHAR bmpinfoheader[64];
#define GET_2B(array,offset)  ((unsigned int) UCH(array[offset]) + \
			       (((unsigned int) UCH(array[offset+1])) << 8))
#define GET_4B(array,offset)  ((INT32) UCH(array[offset]) + \
			       (((INT32) UCH(array[offset+1])) << 8) + \
			       (((INT32) UCH(array[offset+2])) << 16) + \
			       (((INT32) UCH(array[offset+3])) << 24))
  INT32 bfOffBits;
  INT32 headerSize;
  INT32 biWidth = 0;		/* initialize to avoid compiler warning */
  INT32 biHeight = 0;
  unsigned int biPlanes;
  INT32 biCompression;
  INT32 biXPelsPerMeter,biYPelsPerMeter;
  INT32 biClrUsed = 0;
  int mapentrysize = 0;		/* 0 indicates no colormap */
  INT32 bPad;
  JDIMENSION row_width;

  /* Read and verify the bitmap file header */
  if (! ReadOK(source->pub.input_file, bmpfileheader, 14))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  if (GET_2B(bmpfileheader,0) != 0x4D42) /* 'BM' */
    ERREXIT(cinfo, JERR_BMP_NOT);
  bfOffBits = (INT32) GET_4B(bmpfileheader,10);
  /* We ignore the remaining fileheader fields */

  /* The infoheader might be 12 bytes (OS/2 1.x), 40 bytes (Windows),
   * or 64 bytes (OS/2 2.x).  Check the first 4 bytes to find out which.
   */
  if (! ReadOK(source->pub.input_file, bmpinfoheader, 4))
    ERREXIT(cinfo, JERR_INPUT_EOF);
  headerSize = (INT32) GET_4B(bmpinfoheader,0);
  if (headerSize < 12 || headerSize > 64)
    ERREXIT(cinfo, JERR_BMP_BADHEADER);
  if (! ReadOK(source->pub.input_file, bmpinfoheader+4, headerSize-4))
    ERREXIT(cinfo, JERR_INPUT_EOF);

  switch ((int) headerSize) {
  case 12:
    /* Decode OS/2 1.x header (Microsoft calls this a BITMAPCOREHEADER) */
    biWidth = (INT32) GET_2B(bmpinfoheader,4);
    biHeight = (INT32) GET_2B(bmpinfoheader,6);
    biPlanes = GET_2B(bmpinfoheader,8);
    source->bits_per_pixel = (int) GET_2B(bmpinfoheader,10);

    switch (source->bits_per_pixel) {
    case 8:			/* colormapped image */
      mapentrysize = 3;		/* OS/2 uses RGBTRIPLE colormap */
      TRACEMS2(cinfo, 1, JTRC_BMP_OS2_MAPPED, (int) biWidth, (int) biHeight);
      break;
    case 24:			/* RGB image */
      TRACEMS2(cinfo, 1, JTRC_BMP_OS2, (int) biWidth, (int) biHeight);
      break;
    default:
      ERREXIT(cinfo, JERR_BMP_BADDEPTH);
      break;
    }
    if (biPlanes != 1)
      ERREXIT(cinfo, JERR_BMP_BADPLANES);
    break;
  case 40:
  case 64:
    /* Decode Windows 3.x header (Microsoft calls this a BITMAPINFOHEADER) */
    /* or OS/2 2.x header, which has additional fields that we ignore */
    biWidth = GET_4B(bmpinfoheader,4);
    biHeight = GET_4B(bmpinfoheader,8);
    biPlanes = GET_2B(bmpinfoheader,12);
    source->bits_per_pixel = (int) GET_2B(bmpinfoheader,14);
    biCompression = GET_4B(bmpinfoheader,16);
    biXPelsPerMeter = GET_4B(bmpinfoheader,24);
    biYPelsPerMeter = GET_4B(bmpinfoheader,28);
    biClrUsed = GET_4B(bmpinfoheader,32);
    /* biSizeImage, biClrImportant fields are ignored */

    switch (source->bits_per_pixel) {
    case 8:			/* colormapped image */
      mapentrysize = 4;		/* Windows uses RGBQUAD colormap */
      TRACEMS2(cinfo, 1, JTRC_BMP_MAPPED, (int) biWidth, (int) biHeight);
      break;
    case 24:			/* RGB image */
      TRACEMS2(cinfo, 1, JTRC_BMP, (int) biWidth, (int) biHeight);
      break;
    default:
      ERREXIT(cinfo, JERR_BMP_BADDEPTH);
      break;
    }
    if (biPlanes != 1)
      ERREXIT(cinfo, JERR_BMP_BADPLANES);
    if (biCompression != 0)
      ERREXIT(cinfo, JERR_BMP_COMPRESSED);

    if (biXPelsPerMeter > 0 && biYPelsPerMeter > 0) {
      /* Set JFIF density parameters from the BMP data */
      cinfo->X_density = (UINT16) (biXPelsPerMeter/100); /* 100 cm per meter */
      cinfo->Y_density = (UINT16) (biYPelsPerMeter/100);
      cinfo->density_unit = 2;	/* dots/cm */
    }
    break;
  default:
    ERREXIT(cinfo, JERR_BMP_BADHEADER);
    break;
  }

  /* Compute distance to bitmap data --- will adjust for colormap below */
  bPad = bfOffBits - (headerSize + 14);

  /* Read the colormap, if any */
  if (mapentrysize > 0) {
    if (biClrUsed <= 0)
      biClrUsed = 256;		/* assume it's 256 */
    else if (biClrUsed > 256)
      ERREXIT(cinfo, JERR_BMP_BADCMAP);
    /* Allocate space to store the colormap */
    source->colormap = (*cinfo->mem->alloc_sarray)
      ((j_common_ptr) cinfo, JPOOL_IMAGE,
       (JDIMENSION) biClrUsed, (JDIMENSION) 3);
    /* and read it from the file */
    read_colormap(source, (int) biClrUsed, mapentrysize);
    /* account for size of colormap */
    bPad -= biClrUsed * mapentrysize;
  }

  /* Skip any remaining pad bytes */
  if (bPad < 0)			/* incorrect bfOffBits value? */
    ERREXIT(cinfo, JERR_BMP_BADHEADER);
  while (--bPad >= 0) {
    (void) read_byte(source);
  }

  /* Compute row width in file, including padding to 4-byte boundary */
  if (source->bits_per_pixel == 24)
    row_width = (JDIMENSION) (biWidth * 3);
  else
    row_width = (JDIMENSION) biWidth;
  while ((row_width & 3) != 0) row_width++;
  source->row_width = row_width;

  /* Allocate space for inversion array, prepare for preload pass */
  source->whole_image = (*cinfo->mem->request_virt_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
     row_width, (JDIMENSION) biHeight, (JDIMENSION) 1);
  source->pub.get_pixel_rows = preload_image;
  if (cinfo->progress != NULL) {
    cd_progress_ptr progress = (cd_progress_ptr) cinfo->progress;
    progress->total_extra_passes++; /* count file input as separate pass */
  }

  /* Allocate one-row buffer for returned data */
  source->pub.buffer = (*cinfo->mem->alloc_sarray)
    ((j_common_ptr) cinfo, JPOOL_IMAGE,
     (JDIMENSION) (biWidth * 3), (JDIMENSION) 1);
  source->pub.buffer_height = 1;

  cinfo->in_color_space = JCS_RGB;
  cinfo->input_components = 3;
  cinfo->data_precision = 8;
  cinfo->image_width = (JDIMENSION) biWidth;
  cinfo->image_height = (JDIMENSION) biHeight;
}


/*
 * Finish up at the end of the file.
 */

METHODDEF(void)
finish_input_bmp (j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
{
  /* no work */
}


/*
 * The module selection routine for BMP format input.
 */

GLOBAL(cjpeg_source_ptr)
jinit_read_bmp (j_compress_ptr cinfo)
{
  bmp_source_ptr source;

  /* Create module interface object */
  source = (bmp_source_ptr)
      (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				  SIZEOF(bmp_source_struct));
  source->cinfo = cinfo;	/* make back link for subroutines */
  /* Fill in method ptrs, except get_pixel_rows which start_input sets */
  source->pub.start_input = start_input_bmp;
  source->pub.finish_input = finish_input_bmp;

  return (cjpeg_source_ptr) source;
}

#endif /* BMP_SUPPORTED */

--- NEW FILE: jcmainct.c ---
/*
 * jcmainct.c
 *
 * Copyright (C) 1994-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains the main buffer controller for compression.
 * The main buffer lies between the pre-processor and the JPEG
 * compressor proper; it holds downsampled data in the JPEG colorspace.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"


/* Note: currently, there is no operating mode in which a full-image buffer
 * is needed at this step.  If there were, that mode could not be used with
 * "raw data" input, since this module is bypassed in that case.  However,
 * we've left the code here for possible use in special applications.
 */
#undef FULL_MAIN_BUFFER_SUPPORTED


/* Private buffer controller object */

typedef struct {
  struct jpeg_c_main_controller pub; /* public fields */

  JDIMENSION cur_iMCU_row;	/* number of current iMCU row */
  JDIMENSION rowgroup_ctr;	/* counts row groups received in iMCU row */
  boolean suspended;		/* remember if we suspended output */
  J_BUF_MODE pass_mode;		/* current operating mode */

  /* If using just a strip buffer, this points to the entire set of buffers
   * (we allocate one for each component).  In the full-image case, this
   * points to the currently accessible strips of the virtual arrays.
   */
  JSAMPARRAY buffer[MAX_COMPONENTS];

#ifdef FULL_MAIN_BUFFER_SUPPORTED
  /* If using full-image storage, this array holds pointers to virtual-array
   * control blocks for each component.  Unused if not full-image storage.
   */
  jvirt_sarray_ptr whole_image[MAX_COMPONENTS];
#endif
} my_main_controller;

typedef my_main_controller * my_main_ptr;


/* Forward declarations */
METHODDEF(void) process_data_simple_main
	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#ifdef FULL_MAIN_BUFFER_SUPPORTED
METHODDEF(void) process_data_buffer_main
	JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf,
	     JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail));
#endif


/*
 * Initialize for a processing pass.
 */

METHODDEF(void)
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;

  /* Do nothing in raw-data mode. */
  if (cinfo->raw_data_in)
    return;

  main->cur_iMCU_row = 0;	/* initialize counters */
  main->rowgroup_ctr = 0;
  main->suspended = FALSE;
  main->pass_mode = pass_mode;	/* save mode for use by process_data */

  switch (pass_mode) {
  case JBUF_PASS_THRU:
#ifdef FULL_MAIN_BUFFER_SUPPORTED
    if (main->whole_image[0] != NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
    main->pub.process_data = process_data_simple_main;
    break;
#ifdef FULL_MAIN_BUFFER_SUPPORTED
  case JBUF_SAVE_SOURCE:
  case JBUF_CRANK_DEST:
  case JBUF_SAVE_AND_PASS:
    if (main->whole_image[0] == NULL)
      ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    main->pub.process_data = process_data_buffer_main;
    break;
#endif
  default:
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
    break;
  }
}


/*
 * Process some data.
 * This routine handles the simple pass-through mode,
 * where we have only a strip buffer.
 */

METHODDEF(void)
process_data_simple_main (j_compress_ptr cinfo,
			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
			  JDIMENSION in_rows_avail)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;

  while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
    /* Read input data if we haven't filled the main buffer yet */
    if (main->rowgroup_ctr < DCTSIZE)
      (*cinfo->prep->pre_process_data) (cinfo,
					input_buf, in_row_ctr, in_rows_avail,
					main->buffer, &main->rowgroup_ctr,
					(JDIMENSION) DCTSIZE);

    /* If we don't have a full iMCU row buffered, return to application for
     * more data.  Note that preprocessor will always pad to fill the iMCU row
     * at the bottom of the image.
     */
    if (main->rowgroup_ctr != DCTSIZE)
      return;

    /* Send the completed row to the compressor */
    if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
      /* If compressor did not consume the whole row, then we must need to
       * suspend processing and return to the application.  In this situation
       * we pretend we didn't yet consume the last input row; otherwise, if
       * it happened to be the last row of the image, the application would
       * think we were done.
       */
      if (! main->suspended) {
	(*in_row_ctr)--;
	main->suspended = TRUE;
      }
      return;
    }
    /* We did finish the row.  Undo our little suspension hack if a previous
     * call suspended; then mark the main buffer empty.
     */
    if (main->suspended) {
      (*in_row_ctr)++;
      main->suspended = FALSE;
    }
    main->rowgroup_ctr = 0;
    main->cur_iMCU_row++;
  }
}


#ifdef FULL_MAIN_BUFFER_SUPPORTED

/*
 * Process some data.
 * This routine handles all of the modes that use a full-size buffer.
 */

METHODDEF(void)
process_data_buffer_main (j_compress_ptr cinfo,
			  JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
			  JDIMENSION in_rows_avail)
{
  my_main_ptr main = (my_main_ptr) cinfo->main;
  int ci;
  jpeg_component_info *compptr;
  boolean writing = (main->pass_mode != JBUF_CRANK_DEST);

  while (main->cur_iMCU_row < cinfo->total_iMCU_rows) {
    /* Realign the virtual buffers if at the start of an iMCU row. */
    if (main->rowgroup_ctr == 0) {
      for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
	   ci++, compptr++) {
	main->buffer[ci] = (*cinfo->mem->access_virt_sarray)
	  ((j_common_ptr) cinfo, main->whole_image[ci],
	   main->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE),
	   (JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing);
      }
      /* In a read pass, pretend we just read some source data. */
      if (! writing) {
	*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE;
	main->rowgroup_ctr = DCTSIZE;
      }
    }

    /* If a write pass, read input data until the current iMCU row is full. */
    /* Note: preprocessor will pad if necessary to fill the last iMCU row. */
    if (writing) {
      (*cinfo->prep->pre_process_data) (cinfo,
					input_buf, in_row_ctr, in_rows_avail,
					main->buffer, &main->rowgroup_ctr,
					(JDIMENSION) DCTSIZE);
      /* Return to application if we need more data to fill the iMCU row. */
      if (main->rowgroup_ctr < DCTSIZE)
	return;
    }

    /* Emit data, unless this is a sink-only pass. */
    if (main->pass_mode != JBUF_SAVE_SOURCE) {
      if (! (*cinfo->coef->compress_data) (cinfo, main->buffer)) {
	/* If compressor did not consume the whole row, then we must need to
	 * suspend processing and return to the application.  In this situation
	 * we pretend we didn't yet consume the last input row; otherwise, if
	 * it happened to be the last row of the image, the application would
	 * think we were done.
	 */
	if (! main->suspended) {
	  (*in_row_ctr)--;
	  main->suspended = TRUE;
	}
	return;
      }
      /* We did finish the row.  Undo our little suspension hack if a previous
       * call suspended; then mark the main buffer empty.
       */
      if (main->suspended) {
	(*in_row_ctr)++;
	main->suspended = FALSE;
      }
    }

    /* If get here, we are done with this iMCU row.  Mark buffer empty. */
    main->rowgroup_ctr = 0;
    main->cur_iMCU_row++;
  }
}

#endif /* FULL_MAIN_BUFFER_SUPPORTED */


/*
 * Initialize main buffer controller.
 */

GLOBAL(void)
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer)
{
  my_main_ptr main;
  int ci;
  jpeg_component_info *compptr;

  main = (my_main_ptr)
    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				SIZEOF(my_main_controller));
  cinfo->main = (struct jpeg_c_main_controller *) main;
  main->pub.start_pass = start_pass_main;

  /* We don't need to create a buffer in raw-data mode. */
  if (cinfo->raw_data_in)
    return;

  /* Create the buffer.  It holds downsampled data, so each component
   * may be of a different size.
   */
  if (need_full_buffer) {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
    /* Allocate a full-image virtual array for each component */
    /* Note we pad the bottom to a multiple of the iMCU height */
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
	 ci++, compptr++) {
      main->whole_image[ci] = (*cinfo->mem->request_virt_sarray)
	((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
	 compptr->width_in_blocks * DCTSIZE,
	 (JDIMENSION) jround_up((long) compptr->height_in_blocks,
				(long) compptr->v_samp_factor) * DCTSIZE,
	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
    }
#else
    ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
#endif
  } else {
#ifdef FULL_MAIN_BUFFER_SUPPORTED
    main->whole_image[0] = NULL; /* flag for no virtual arrays */
#endif
    /* Allocate a strip buffer for each component */
    for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
	 ci++, compptr++) {
      main->buffer[ci] = (*cinfo->mem->alloc_sarray)
	((j_common_ptr) cinfo, JPOOL_IMAGE,
	 compptr->width_in_blocks * DCTSIZE,
	 (JDIMENSION) (compptr->v_samp_factor * DCTSIZE));
    }
  }
}

--- NEW FILE: transupp.h ---
/*
 * transupp.h
 *
 * Copyright (C) 1997, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains declarations for image transformation routines and
 * other utility code used by the jpegtran sample application.  These are
 * NOT part of the core JPEG library.  But we keep these routines separate
 * from jpegtran.c to ease the task of maintaining jpegtran-like programs
 * that have other user interfaces.
 *
 * NOTE: all the routines declared here have very specific requirements
 * about when they are to be executed during the reading and writing of the
 * source and destination files.  See the comments in transupp.c, or see
 * jpegtran.c for an example of correct usage.
 */

/* If you happen not to want the image transform support, disable it here */
#ifndef TRANSFORMS_SUPPORTED
#define TRANSFORMS_SUPPORTED 1		/* 0 disables transform code */
#endif

/* Short forms of external names for systems with brain-damaged linkers. */

#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jtransform_request_workspace		jTrRequest
#define jtransform_adjust_parameters		jTrAdjust
#define jtransform_execute_transformation	jTrExec
#define jcopy_markers_setup			jCMrkSetup
#define jcopy_markers_execute			jCMrkExec
#endif /* NEED_SHORT_EXTERNAL_NAMES */


/*
 * Codes for supported types of image transformations.
 */

typedef enum {
	JXFORM_NONE,		/* no transformation */
	JXFORM_FLIP_H,		/* horizontal flip */
	JXFORM_FLIP_V,		/* vertical flip */
	JXFORM_TRANSPOSE,	/* transpose across UL-to-LR axis */
	JXFORM_TRANSVERSE,	/* transpose across UR-to-LL axis */
	JXFORM_ROT_90,		/* 90-degree clockwise rotation */
	JXFORM_ROT_180,		/* 180-degree rotation */
	JXFORM_ROT_270		/* 270-degree clockwise (or 90 ccw) */
} JXFORM_CODE;

/*
 * Although rotating and flipping data expressed as DCT coefficients is not
 * hard, there is an asymmetry in the JPEG format specification for images
 * whose dimensions aren't multiples of the iMCU size.  The right and bottom
 * image edges are padded out to the next iMCU boundary with junk data; but
 * no padding is possible at the top and left edges.  If we were to flip
 * the whole image including the pad data, then pad garbage would become
 * visible at the top and/or left, and real pixels would disappear into the
 * pad margins --- perhaps permanently, since encoders & decoders may not
 * bother to preserve DCT blocks that appear to be completely outside the
 * nominal image area.  So, we have to exclude any partial iMCUs from the
 * basic transformation.
 *
 * Transpose is the only transformation that can handle partial iMCUs at the
 * right and bottom edges completely cleanly.  flip_h can flip partial iMCUs
 * at the bottom, but leaves any partial iMCUs at the right edge untouched.
 * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
 * The other transforms are defined as combinations of these basic transforms
 * and process edge blocks in a way that preserves the equivalence.
 *
 * The "trim" option causes untransformable partial iMCUs to be dropped;
 * this is not strictly lossless, but it usually gives the best-looking
 * result for odd-size images.  Note that when this option is active,
 * the expected mathematical equivalences between the transforms may not hold.
 * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
 * followed by -rot 180 -trim trims both edges.)
 *
 * We also offer a "force to grayscale" option, which simply discards the
 * chrominance channels of a YCbCr image.  This is lossless in the sense that
 * the luminance channel is preserved exactly.  It's not the same kind of
 * thing as the rotate/flip transformations, but it's convenient to handle it
 * as part of this package, mainly because the transformation routines have to
 * be aware of the option to know how many components to work on.
 */

typedef struct {
  /* Options: set by caller */
  JXFORM_CODE transform;	/* image transform operator */
  boolean trim;			/* if TRUE, trim partial MCUs as needed */
  boolean force_grayscale;	/* if TRUE, convert color image to grayscale */

  /* Internal workspace: caller should not touch these */
  int num_components;		/* # of components in workspace */
  jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
} jpeg_transform_info;


#if TRANSFORMS_SUPPORTED

/* Request any required workspace */
EXTERN(void) jtransform_request_workspace
	JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
/* Adjust output image parameters */
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
	     jvirt_barray_ptr *src_coef_arrays,
	     jpeg_transform_info *info));
/* Execute the actual transformation, if any */
EXTERN(void) jtransform_execute_transformation
	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
	     jvirt_barray_ptr *src_coef_arrays,
	     jpeg_transform_info *info));

#endif /* TRANSFORMS_SUPPORTED */


/*
 * Support for copying optional markers from source to destination file.
 */

typedef enum {
	JCOPYOPT_NONE,		/* copy no optional markers */
	JCOPYOPT_COMMENTS,	/* copy only comment (COM) markers */
	JCOPYOPT_ALL		/* copy all optional markers */
} JCOPY_OPTION;

#define JCOPYOPT_DEFAULT  JCOPYOPT_COMMENTS	/* recommended default */

/* Setup decompression object to save desired markers in memory */
EXTERN(void) jcopy_markers_setup
	JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
/* Copy markers saved in the given source object to the destination object */
EXTERN(void) jcopy_markers_execute
	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
	     JCOPY_OPTION option));

--- NEW FILE: makeapps.ds ---
# Microsoft Developer Studio Generated NMAKE File, Format Version 4.20
# ** DO NOT EDIT **

# TARGTYPE "Win32 (x86) Console Application" 0x0103

!IF "$(CFG)" == ""
CFG=cjpeg - Win32
!MESSAGE No configuration specified.  Defaulting to cjpeg - Win32.
!ENDIF 

!IF "$(CFG)" != "cjpeg - Win32" && "$(CFG)" != "djpeg - Win32" &&\
 "$(CFG)" != "jpegtran - Win32" && "$(CFG)" != "rdjpgcom - Win32" &&\
 "$(CFG)" != "wrjpgcom - Win32"
!MESSAGE Invalid configuration "$(CFG)" specified.
!MESSAGE You can specify a configuration when running NMAKE on this makefile
!MESSAGE by defining the macro CFG on the command line.  For example:
!MESSAGE 
!MESSAGE NMAKE /f "apps.mak" CFG="cjpeg - Win32"
!MESSAGE 
!MESSAGE Possible choices for configuration are:
!MESSAGE 
!MESSAGE "cjpeg - Win32" (based on "Win32 (x86) Console Application")
!MESSAGE "djpeg - Win32" (based on "Win32 (x86) Console Application")
!MESSAGE "jpegtran - Win32" (based on "Win32 (x86) Console Application")
!MESSAGE "rdjpgcom - Win32" (based on "Win32 (x86) Console Application")
!MESSAGE "wrjpgcom - Win32" (based on "Win32 (x86) Console Application")
!MESSAGE 
!ERROR An invalid configuration is specified.
!ENDIF 

!IF "$(OS)" == "Windows_NT"
NULL=
!ELSE 
NULL=nul
!ENDIF 
################################################################################
# Begin Project
# PROP Target_Last_Scanned "cjpeg - Win32"
CPP=cl.exe
RSC=rc.exe

!IF  "$(CFG)" == "cjpeg - Win32"

# PROP BASE Use_MFC 0
# PROP BASE Use_Debug_Libraries 0
# PROP BASE Output_Dir "cjpeg\Release"
# PROP BASE Intermediate_Dir "cjpeg\Release"
# PROP BASE Target_Dir "cjpeg"
# PROP Use_MFC 0
# PROP Use_Debug_Libraries 0
# PROP Output_Dir "cjpeg\Release"
# PROP Intermediate_Dir "cjpeg\Release"
# PROP Target_Dir "cjpeg"
OUTDIR=.\cjpeg\Release
INTDIR=.\cjpeg\Release

ALL : "$(OUTDIR)\cjpeg.exe"

CLEAN : 
	- at erase "$(INTDIR)\cjpeg.obj"
	- at erase "$(INTDIR)\rdppm.obj"
	- at erase "$(INTDIR)\rdgif.obj"