dslinux/user/perl/lib/Math BigFloat.pm BigInt.pm BigRat.pm Complex.pm Complex.t Trig.pm Trig.t

cayenne dslinux_cayenne at user.in-berlin.de
Mon Dec 4 18:00:47 CET 2006


Update of /cvsroot/dslinux/dslinux/user/perl/lib/Math
In directory antilope:/tmp/cvs-serv17422/lib/Math

Added Files:
	BigFloat.pm BigInt.pm BigRat.pm Complex.pm Complex.t Trig.pm 
	Trig.t 
Log Message:
Adding fresh perl source to HEAD to branch from

--- NEW FILE: BigRat.pm ---

#
# "Tax the rat farms." - Lord Vetinari
#

# The following hash values are used:
#   sign : +,-,NaN,+inf,-inf
#   _d   : denominator
#   _n   : numeraotr (value = _n/_d)
#   _a   : accuracy
#   _p   : precision
# You should not look at the innards of a BigRat - use the methods for this.

package Math::BigRat;

require 5.005_03;
use strict;

use Math::BigFloat;
[...1649 lines suppressed...]

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.

=head1 SEE ALSO

L<Math::BigFloat> and L<Math::Big> as well as L<Math::BigInt::BitVect>,
L<Math::BigInt::Pari> and  L<Math::BigInt::GMP>.

See L<http://search.cpan.org/search?dist=bignum> for a way to use
Math::BigRat.

The package at L<http://search.cpan.org/search?dist=Math%3A%3ABigRat>
may contain more documentation and examples as well as testcases.

=head1 AUTHORS

(C) by Tels L<http://bloodgate.com/> 2001 - 2005.

=cut

--- NEW FILE: Complex.t ---
#!./perl

#
# Regression tests for the Math::Complex pacakge
# -- Raphael Manfredi	since Sep 1996
# -- Jarkko Hietaniemi	since Mar 1997
# -- Daniel S. Lewart	since Sep 1997

BEGIN {
    if ($ENV{PERL_CORE}) {
	chdir 't' if -d 't';
	@INC = '../lib';
    }
}

use Math::Complex;

use vars qw($VERSION);

[...1097 lines suppressed...]

&acsch
( 2, 3):(  0.15735549884499, -0.22996290237721)
(-2, 3):( -0.15735549884499, -0.22996290237721)
(-2,-3):( -0.15735549884499,  0.22996290237721)
( 2,-3):(  0.15735549884499,  0.22996290237721)

&acoth
(-2.0,0):(  -0.54930614433405, 0               )
(-0.5,0):(  -0.54930614433405, 1.57079632679490)
( 0.5,0):(   0.54930614433405, 1.57079632679490)
( 2.0,0):(   0.54930614433405, 0               )

&acoth
( 2, 3):(  0.14694666622553, -0.23182380450040)
(-2, 3):( -0.14694666622553, -0.23182380450040)
(-2,-3):( -0.14694666622553,  0.23182380450040)
( 2,-3):(  0.14694666622553,  0.23182380450040)

# eof

--- NEW FILE: BigFloat.pm ---
package Math::BigFloat;

# 
# Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
#

# The following hash values are internally used:
#   _e	: exponent (ref to $CALC object)
#   _m	: mantissa (ref to $CALC object)
#   _es	: sign of _e
# sign	: +,-,+inf,-inf, or "NaN" if not a number
#   _a	: accuracy
#   _p	: precision

$VERSION = '1.51';
require 5.005;

require Exporter;
@ISA =       qw(Exporter Math::BigInt);
[...3108 lines suppressed...]
The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
because they solve the autoupgrading/downgrading issue, at least partly.

The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.

=head1 LICENSE

This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.

=head1 AUTHORS

Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels L<http://bloodgate.com> in 2001 - 2004, and still
at it in 2005.

=cut

--- NEW FILE: BigInt.pm ---
package Math::BigInt;

#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#

# The following hash values are used:
#   value: unsigned int with actual value (as a Math::BigInt::Calc or similiar)
#   sign : +,-,NaN,+inf,-inf
#   _a   : accuracy
#   _p   : precision
#   _f   : flags, used by MBF to flag parts of a float as untouchable

# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!

my $class = "Math::BigInt";
require 5.005;
[...4411 lines suppressed...]

The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.

The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.

=head1 AUTHORS

Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2004
and still at it in 2005.

Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (uncomplete) list. If you miss your name, please drop me a
mail. Thank you!

=cut

--- NEW FILE: Trig.t ---
#!./perl 

#
# Regression tests for the Math::Trig package
#
# The tests here are quite modest as the Math::Complex tests exercise
# these interfaces quite vigorously.
# 
# -- Jarkko Hietaniemi, April 1997

BEGIN {
    if ($ENV{PERL_CORE}) {
	chdir 't' if -d 't';
	@INC = '../lib';
    }
}

use Math::Trig 1.03;

my $pip2 = pi / 2;

use strict;

use vars qw($x $y $z);

my $eps = 1e-11;

if ($^O eq 'unicos') { # See lib/Math/Complex.pm and t/lib/complex.t.
    $eps = 1e-10;
}

sub near ($$;$) {
    my $e = defined $_[2] ? $_[2] : $eps;
    print "# near? $_[0] $_[1] $e\n";
    $_[1] ? (abs($_[0]/$_[1] - 1) < $e) : abs($_[0]) < $e;
}

print "1..49\n";

$x = 0.9;
print 'not ' unless (near(tan($x), sin($x) / cos($x)));
print "ok 1\n";

print 'not ' unless (near(sinh(2), 3.62686040784702));
print "ok 2\n";

print 'not ' unless (near(acsch(0.1), 2.99822295029797));
print "ok 3\n";

$x = asin(2);
print 'not ' unless (ref $x eq 'Math::Complex');
print "ok 4\n";

# avoid using Math::Complex here
$x =~ /^([^-]+)(-[^i]+)i$/;
($y, $z) = ($1, $2);
print 'not ' unless (near($y,  1.5707963267949) and
		     near($z, -1.31695789692482));
print "ok 5\n";

print 'not ' unless (near(deg2rad(90), pi/2));
print "ok 6\n";

print 'not ' unless (near(rad2deg(pi), 180));
print "ok 7\n";

use Math::Trig ':radial';

{
    my ($r,$t,$z) = cartesian_to_cylindrical(1,1,1);

    print 'not ' unless (near($r, sqrt(2)))     and
	                (near($t, deg2rad(45))) and
			(near($z, 1));
    print "ok 8\n";

    ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);

    print 'not ' unless (near($x, 1)) and
	                (near($y, 1)) and
			(near($z, 1));
    print "ok 9\n";

    ($r,$t,$z) = cartesian_to_cylindrical(1,1,0);

    print 'not ' unless (near($r, sqrt(2)))     and
	                (near($t, deg2rad(45))) and
			(near($z, 0));
    print "ok 10\n";

    ($x,$y,$z) = cylindrical_to_cartesian($r, $t, $z);

    print 'not ' unless (near($x, 1)) and
	                (near($y, 1)) and
			(near($z, 0));
    print "ok 11\n";
}

{
    my ($r,$t,$f) = cartesian_to_spherical(1,1,1);

    print 'not ' unless (near($r, sqrt(3)))     and
	                (near($t, deg2rad(45))) and
			(near($f, atan2(sqrt(2), 1)));
    print "ok 12\n";

    ($x,$y,$z) = spherical_to_cartesian($r, $t, $f);

    print 'not ' unless (near($x, 1)) and
	                (near($y, 1)) and
			(near($z, 1));
    print "ok 13\n";

    ($r,$t,$f) = cartesian_to_spherical(1,1,0);

    print 'not ' unless (near($r, sqrt(2)))     and
	                (near($t, deg2rad(45))) and
			(near($f, deg2rad(90)));
    print "ok 14\n";

    ($x,$y,$z) = spherical_to_cartesian($r, $t, $f);

    print 'not ' unless (near($x, 1)) and
	                (near($y, 1)) and
			(near($z, 0));
    print "ok 15\n";
}

{
    my ($r,$t,$z) = cylindrical_to_spherical(spherical_to_cylindrical(1,1,1));

    print 'not ' unless (near($r, 1)) and
	                (near($t, 1)) and
			(near($z, 1));
    print "ok 16\n";

    ($r,$t,$z) = spherical_to_cylindrical(cylindrical_to_spherical(1,1,1));

    print 'not ' unless (near($r, 1)) and
	                (near($t, 1)) and
			(near($z, 1));
    print "ok 17\n";
}

{
    use Math::Trig 'great_circle_distance';

    print 'not '
	unless (near(great_circle_distance(0, 0, 0, pi/2), pi/2));
    print "ok 18\n";

    print 'not '
	unless (near(great_circle_distance(0, 0, pi, pi), pi));
    print "ok 19\n";

    # London to Tokyo.
    my @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
    my @T = (deg2rad(139.8),deg2rad(90 - 35.7));

    my $km = great_circle_distance(@L, @T, 6378);

    print 'not ' unless (near($km, 9605.26637021388));
    print "ok 20\n";
}

{
    my $R2D = 57.295779513082320876798154814169;

    sub frac { $_[0] - int($_[0]) }

    my $lotta_radians = deg2rad(1E+20, 1);
    print "not " unless near($lotta_radians,  1E+20/$R2D);
    print "ok 21\n";

    my $negat_degrees = rad2deg(-1E20, 1);
    print "not " unless near($negat_degrees, -1E+20*$R2D);
    print "ok 22\n";

    my $posit_degrees = rad2deg(-10000, 1);
    print "not " unless near($posit_degrees, -10000*$R2D);
    print "ok 23\n";
}

{
    use Math::Trig 'great_circle_direction';

    print 'not '
	unless (near(great_circle_direction(0, 0, 0, pi/2), pi));
    print "ok 24\n";

# Retired test: Relies on atan2(0, 0), which is not portable.
#    print 'not '
#	unless (near(great_circle_direction(0, 0, pi, pi), -pi()/2));
    print "ok 25\n";

    my @London  = (deg2rad(  -0.167), deg2rad(90 - 51.3));
    my @Tokyo   = (deg2rad( 139.5),   deg2rad(90 - 35.7));
    my @Berlin  = (deg2rad ( 13.417), deg2rad(90 - 52.533));
    my @Paris   = (deg2rad (  2.333), deg2rad(90 - 48.867));

    print 'not '
	unless (near(rad2deg(great_circle_direction(@London, @Tokyo)),
		     31.791945393073));
    print "ok 26\n";

    print 'not '
	unless (near(rad2deg(great_circle_direction(@Tokyo, @London)),
		     336.069766430326));
    print "ok 27\n";

    print 'not '
	unless (near(rad2deg(great_circle_direction(@Berlin, @Paris)),
		     246.800348034667));
    
    print "ok 28\n";

    print 'not '
	unless (near(rad2deg(great_circle_direction(@Paris, @Berlin)),
		     58.2079877553156));
    print "ok 29\n";

    use Math::Trig 'great_circle_bearing';

    print 'not '
	unless (near(rad2deg(great_circle_bearing(@Paris, @Berlin)),
		     58.2079877553156));
    print "ok 30\n";

    use Math::Trig 'great_circle_waypoint';
    use Math::Trig 'great_circle_midpoint';

    my ($lon, $lat);

    ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.0);

    print 'not ' unless (near($lon, $London[0]));
    print "ok 31\n";

    print 'not ' unless (near($lat, $pip2 - $London[1]));
    print "ok 32\n";

    ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 1.0);

    print 'not ' unless (near($lon, $Tokyo[0]));
    print "ok 33\n";

    print 'not ' unless (near($lat, $pip2 - $Tokyo[1]));
    print "ok 34\n";

    ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.5);

    print 'not ' unless (near($lon, 1.55609593577679)); # 89.1577 E
    print "ok 35\n";

    print 'not ' unless (near($lat, 1.20296099733328)); # 68.9246 N
    print "ok 36\n";

    ($lon, $lat) = great_circle_midpoint(@London, @Tokyo);

    print 'not ' unless (near($lon, 1.55609593577679)); # 89.1577 E
    print "ok 37\n";

    print 'not ' unless (near($lat, 1.20296099733328)); # 68.9246 N
    print "ok 38\n";

    ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.25);

    print 'not ' unless (near($lon, 0.516073562850837)); # 29.5688 E
    print "ok 39\n";

    print 'not ' unless (near($lat, 1.170565013391510)); # 67.0684 N
    print "ok 40\n";
    ($lon, $lat) = great_circle_waypoint(@London, @Tokyo, 0.75);

    print 'not ' unless (near($lon, 2.17494903805952)); # 124.6154 E
    print "ok 41\n";

    print 'not ' unless (near($lat, 0.952987032741305)); # 54.6021 N
    print "ok 42\n";

    use Math::Trig 'great_circle_destination';

    my $dir1 = great_circle_direction(@London, @Tokyo);
    my $dst1 = great_circle_distance(@London,  @Tokyo);

    ($lon, $lat) = great_circle_destination(@London, $dir1, $dst1);

    print 'not ' unless (near($lon, $Tokyo[0]));
    print "ok 43\n";

    print 'not ' unless (near($lat, $pip2 - $Tokyo[1]));
    print "ok 44\n";

    my $dir2 = great_circle_direction(@Tokyo, @London);
    my $dst2 = great_circle_distance(@Tokyo,  @London);

    ($lon, $lat) = great_circle_destination(@Tokyo, $dir2, $dst2);

    print 'not ' unless (near($lon, $London[0]));
    print "ok 45\n";

    print 'not ' unless (near($lat, $pip2 - $London[1]));
    print "ok 46\n";

    my $dir3 = (great_circle_destination(@London, $dir1, $dst1))[2];

    print 'not ' unless (near($dir3, 2.69379263839118)); # about 154.343 deg
    print "ok 47\n";

    my $dir4 = (great_circle_destination(@Tokyo,  $dir2, $dst2))[2];

    print 'not ' unless (near($dir4, 3.6993902625701)); # about 211.959 deg
    print "ok 48\n";

    print 'not ' unless (near($dst1, $dst2));
    print "ok 49\n";
}

# eof

--- NEW FILE: Trig.pm ---
#
# Trigonometric functions, mostly inherited from Math::Complex.
# -- Jarkko Hietaniemi, since April 1997
# -- Raphael Manfredi, September 1996 (indirectly: because of Math::Complex)
#

require Exporter;
package Math::Trig;

use 5.006;
use strict;

use Math::Complex 1.35;
use Math::Complex qw(:trig);

our($VERSION, $PACKAGE, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);

@ISA = qw(Exporter);

$VERSION = 1.03;

my @angcnv = qw(rad2deg rad2grad
		deg2rad deg2grad
		grad2rad grad2deg);

@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
	   @angcnv);

my @rdlcnv = qw(cartesian_to_cylindrical
		cartesian_to_spherical
		cylindrical_to_cartesian
		cylindrical_to_spherical
		spherical_to_cartesian
		spherical_to_cylindrical);

my @greatcircle = qw(
		     great_circle_distance
		     great_circle_direction
		     great_circle_bearing
		     great_circle_waypoint
		     great_circle_midpoint
		     great_circle_destination
		    );

my @pi = qw(pi2 pip2 pip4);

@EXPORT_OK = (@rdlcnv, @greatcircle, @pi);

# See e.g. the following pages:
# http://www.movable-type.co.uk/scripts/LatLong.html
# http://williams.best.vwh.net/avform.htm

%EXPORT_TAGS = ('radial' => [ @rdlcnv ],
	        'great_circle' => [ @greatcircle ],
	        'pi'     => [ @pi ]);

sub pi2  () { 2 * pi }
sub pip2 () { pi / 2 }
sub pip4 () { pi / 4 }

sub DR  () { pi2/360 }
sub RD  () { 360/pi2 }
sub DG  () { 400/360 }
sub GD  () { 360/400 }
sub RG  () { 400/pi2 }
sub GR  () { pi2/400 }

#
# Truncating remainder.
#

sub remt ($$) {
    # Oh yes, POSIX::fmod() would be faster. Possibly. If it is available.
    $_[0] - $_[1] * int($_[0] / $_[1]);
}

#
# Angle conversions.
#

sub rad2rad($)     { remt($_[0], pi2) }

sub deg2deg($)     { remt($_[0], 360) }

sub grad2grad($)   { remt($_[0], 400) }

sub rad2deg ($;$)  { my $d = RD * $_[0]; $_[1] ? $d : deg2deg($d) }

sub deg2rad ($;$)  { my $d = DR * $_[0]; $_[1] ? $d : rad2rad($d) }

sub grad2deg ($;$) { my $d = GD * $_[0]; $_[1] ? $d : deg2deg($d) }

sub deg2grad ($;$) { my $d = DG * $_[0]; $_[1] ? $d : grad2grad($d) }

sub rad2grad ($;$) { my $d = RG * $_[0]; $_[1] ? $d : grad2grad($d) }

sub grad2rad ($;$) { my $d = GR * $_[0]; $_[1] ? $d : rad2rad($d) }

sub cartesian_to_spherical {
    my ( $x, $y, $z ) = @_;

    my $rho = sqrt( $x * $x + $y * $y + $z * $z );

    return ( $rho,
             atan2( $y, $x ),
             $rho ? acos( $z / $rho ) : 0 );
}

sub spherical_to_cartesian {
    my ( $rho, $theta, $phi ) = @_;

    return ( $rho * cos( $theta ) * sin( $phi ),
             $rho * sin( $theta ) * sin( $phi ),
             $rho * cos( $phi   ) );
}

sub spherical_to_cylindrical {
    my ( $x, $y, $z ) = spherical_to_cartesian( @_ );

    return ( sqrt( $x * $x + $y * $y ), $_[1], $z );
}

sub cartesian_to_cylindrical {
    my ( $x, $y, $z ) = @_;

    return ( sqrt( $x * $x + $y * $y ), atan2( $y, $x ), $z );
}

sub cylindrical_to_cartesian {
    my ( $rho, $theta, $z ) = @_;

    return ( $rho * cos( $theta ), $rho * sin( $theta ), $z );
}

sub cylindrical_to_spherical {
    return ( cartesian_to_spherical( cylindrical_to_cartesian( @_ ) ) );
}

sub great_circle_distance {
    my ( $theta0, $phi0, $theta1, $phi1, $rho ) = @_;

    $rho = 1 unless defined $rho; # Default to the unit sphere.

    my $lat0 = pip2 - $phi0;
    my $lat1 = pip2 - $phi1;

    return $rho *
        acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
             sin( $lat0 ) * sin( $lat1 ) );
}

sub great_circle_direction {
    my ( $theta0, $phi0, $theta1, $phi1 ) = @_;

    my $distance = &great_circle_distance;

    my $lat0 = pip2 - $phi0;
    my $lat1 = pip2 - $phi1;

    my $direction =
	acos((sin($lat1) - sin($lat0) * cos($distance)) /
	     (cos($lat0) * sin($distance)));

    $direction = pi2 - $direction
	if sin($theta1 - $theta0) < 0;

    return rad2rad($direction);
}

*great_circle_bearing = \&great_circle_direction;

sub great_circle_waypoint {
    my ( $theta0, $phi0, $theta1, $phi1, $point ) = @_;

    $point = 0.5 unless defined $point;

    my $d = great_circle_distance( $theta0, $phi0, $theta1, $phi1 );

    return undef if $d == pi;

    my $sd = sin($d);

    return ($theta0, $phi0) if $sd == 0;

    my $A = sin((1 - $point) * $d) / $sd;
    my $B = sin(     $point  * $d) / $sd;

    my $lat0 = pip2 - $phi0;
    my $lat1 = pip2 - $phi1;

    my $x = $A * cos($lat0) * cos($theta0) + $B * cos($lat1) * cos($theta1);
    my $y = $A * cos($lat0) * sin($theta0) + $B * cos($lat1) * sin($theta1);
    my $z = $A * sin($lat0)                + $B * sin($lat1);

    my $theta = atan2($y, $x);
    my $phi   = atan2($z, sqrt($x*$x + $y*$y));
    
    return ($theta, $phi);
}

sub great_circle_midpoint {
    great_circle_waypoint(@_[0..3], 0.5);
}

sub great_circle_destination {
    my ( $theta0, $phi0, $dir0, $dst ) = @_;

    my $lat0 = pip2 - $phi0;

    my $phi1   = asin(sin($lat0)*cos($dst)+cos($lat0)*sin($dst)*cos($dir0));
    my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
				 cos($dst)-sin($lat0)*sin($phi1));

    my $dir1 = great_circle_bearing($theta1, $phi1, $theta0, $phi0) + pi;

    $dir1 -= pi2 if $dir1 > pi2;

    return ($theta1, $phi1, $dir1);
}

1;

__END__
=pod

=head1 NAME

Math::Trig - trigonometric functions

=head1 SYNOPSIS

	use Math::Trig;

	$x = tan(0.9);
	$y = acos(3.7);
	$z = asin(2.4);

	$halfpi = pi/2;

	$rad = deg2rad(120);

        # Import constants pi2, pip2, pip4 (2*pi, pi/2, pi/4).
	use Math::Trig ':pi';

        # Import the conversions between cartesian/spherical/cylindrical.
	use Math::Trig ':radial';

        # Import the great circle formulas.
	use Math::Trig ':great_circle';

=head1 DESCRIPTION

C<Math::Trig> defines many trigonometric functions not defined by the
core Perl which defines only the C<sin()> and C<cos()>.  The constant
B<pi> is also defined as are a few convenience functions for angle
conversions, and I<great circle formulas> for spherical movement.

=head1 TRIGONOMETRIC FUNCTIONS

The tangent

=over 4

=item B<tan>

=back

The cofunctions of the sine, cosine, and tangent (cosec/csc and cotan/cot
are aliases)

B<csc>, B<cosec>, B<sec>, B<sec>, B<cot>, B<cotan>

The arcus (also known as the inverse) functions of the sine, cosine,
and tangent

B<asin>, B<acos>, B<atan>

The principal value of the arc tangent of y/x

B<atan2>(y, x)

The arcus cofunctions of the sine, cosine, and tangent (acosec/acsc
and acotan/acot are aliases)

B<acsc>, B<acosec>, B<asec>, B<acot>, B<acotan>

The hyperbolic sine, cosine, and tangent

B<sinh>, B<cosh>, B<tanh>

The cofunctions of the hyperbolic sine, cosine, and tangent (cosech/csch
and cotanh/coth are aliases)

B<csch>, B<cosech>, B<sech>, B<coth>, B<cotanh>

The arcus (also known as the inverse) functions of the hyperbolic
sine, cosine, and tangent

B<asinh>, B<acosh>, B<atanh>

The arcus cofunctions of the hyperbolic sine, cosine, and tangent
(acsch/acosech and acoth/acotanh are aliases)

B<acsch>, B<acosech>, B<asech>, B<acoth>, B<acotanh>

The trigonometric constant B<pi> is also defined.

$pi2 = 2 * B<pi>;

=head2 ERRORS DUE TO DIVISION BY ZERO

The following functions

	acoth
	acsc
	acsch
	asec
	asech
	atanh
	cot
	coth
	csc
	csch
	sec
	sech
	tan
	tanh

cannot be computed for all arguments because that would mean dividing
by zero or taking logarithm of zero. These situations cause fatal
runtime errors looking like this

	cot(0): Division by zero.
	(Because in the definition of cot(0), the divisor sin(0) is 0)
	Died at ...

or

	atanh(-1): Logarithm of zero.
	Died at...

For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the
C<atanh>, C<acoth>, the argument cannot be C<1> (one).  For the
C<atanh>, C<acoth>, the argument cannot be C<-1> (minus one).  For the
C<tan>, C<sec>, C<tanh>, C<sech>, the argument cannot be I<pi/2 + k *
pi>, where I<k> is any integer.  atan2(0, 0) is undefined.

=head2 SIMPLE (REAL) ARGUMENTS, COMPLEX RESULTS

Please note that some of the trigonometric functions can break out
from the B<real axis> into the B<complex plane>. For example
C<asin(2)> has no definition for plain real numbers but it has
definition for complex numbers.

In Perl terms this means that supplying the usual Perl numbers (also
known as scalars, please see L<perldata>) as input for the
trigonometric functions might produce as output results that no more
are simple real numbers: instead they are complex numbers.

The C<Math::Trig> handles this by using the C<Math::Complex> package
which knows how to handle complex numbers, please see L<Math::Complex>
for more information. In practice you need not to worry about getting
complex numbers as results because the C<Math::Complex> takes care of
details like for example how to display complex numbers. For example:

	print asin(2), "\n";

should produce something like this (take or leave few last decimals):

	1.5707963267949-1.31695789692482i

That is, a complex number with the real part of approximately C<1.571>
and the imaginary part of approximately C<-1.317>.

=head1 PLANE ANGLE CONVERSIONS

(Plane, 2-dimensional) angles may be converted with the following functions.

	$radians  = deg2rad($degrees);
	$radians  = grad2rad($gradians);

	$degrees  = rad2deg($radians);
	$degrees  = grad2deg($gradians);

	$gradians = deg2grad($degrees);
	$gradians = rad2grad($radians);

The full circle is 2 I<pi> radians or I<360> degrees or I<400> gradians.
The result is by default wrapped to be inside the [0, {2pi,360,400}[ circle.
If you don't want this, supply a true second argument:

	$zillions_of_radians  = deg2rad($zillions_of_degrees, 1);
	$negative_degrees     = rad2deg($negative_radians, 1);

You can also do the wrapping explicitly by rad2rad(), deg2deg(), and
grad2grad().

=head1 RADIAL COORDINATE CONVERSIONS

B<Radial coordinate systems> are the B<spherical> and the B<cylindrical>
systems, explained shortly in more detail.

You can import radial coordinate conversion functions by using the
C<:radial> tag:

    use Math::Trig ':radial';

    ($rho, $theta, $z)     = cartesian_to_cylindrical($x, $y, $z);
    ($rho, $theta, $phi)   = cartesian_to_spherical($x, $y, $z);
    ($x, $y, $z)           = cylindrical_to_cartesian($rho, $theta, $z);
    ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);
    ($x, $y, $z)           = spherical_to_cartesian($rho, $theta, $phi);
    ($rho_c, $theta, $z)   = spherical_to_cylindrical($rho_s, $theta, $phi);

B<All angles are in radians>.

=head2 COORDINATE SYSTEMS

B<Cartesian> coordinates are the usual rectangular I<(x, y, z)>-coordinates.

Spherical coordinates, I<(rho, theta, pi)>, are three-dimensional
coordinates which define a point in three-dimensional space.  They are
based on a sphere surface.  The radius of the sphere is B<rho>, also
known as the I<radial> coordinate.  The angle in the I<xy>-plane
(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
coordinate.  The angle from the I<z>-axis is B<phi>, also known as the
I<polar> coordinate.  The North Pole is therefore I<0, 0, rho>, and
the Gulf of Guinea (think of the missing big chunk of Africa) I<0,
pi/2, rho>.  In geographical terms I<phi> is latitude (northward
positive, southward negative) and I<theta> is longitude (eastward
positive, westward negative).

B<BEWARE>: some texts define I<theta> and I<phi> the other way round,
some texts define the I<phi> to start from the horizontal plane, some
texts use I<r> in place of I<rho>.

Cylindrical coordinates, I<(rho, theta, z)>, are three-dimensional
coordinates which define a point in three-dimensional space.  They are
based on a cylinder surface.  The radius of the cylinder is B<rho>,
also known as the I<radial> coordinate.  The angle in the I<xy>-plane
(around the I<z>-axis) is B<theta>, also known as the I<azimuthal>
coordinate.  The third coordinate is the I<z>, pointing up from the
B<theta>-plane.

=head2 3-D ANGLE CONVERSIONS

Conversions to and from spherical and cylindrical coordinates are
available.  Please notice that the conversions are not necessarily
reversible because of the equalities like I<pi> angles being equal to
I<-pi> angles.

=over 4

=item cartesian_to_cylindrical

        ($rho, $theta, $z) = cartesian_to_cylindrical($x, $y, $z);

=item cartesian_to_spherical

        ($rho, $theta, $phi) = cartesian_to_spherical($x, $y, $z);

=item cylindrical_to_cartesian

        ($x, $y, $z) = cylindrical_to_cartesian($rho, $theta, $z);

=item cylindrical_to_spherical

        ($rho_s, $theta, $phi) = cylindrical_to_spherical($rho_c, $theta, $z);

Notice that when C<$z> is not 0 C<$rho_s> is not equal to C<$rho_c>.

=item spherical_to_cartesian

        ($x, $y, $z) = spherical_to_cartesian($rho, $theta, $phi);

=item spherical_to_cylindrical

        ($rho_c, $theta, $z) = spherical_to_cylindrical($rho_s, $theta, $phi);

Notice that when C<$z> is not 0 C<$rho_c> is not equal to C<$rho_s>.

=back

=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS

You can compute spherical distances, called B<great circle distances>,
by importing the great_circle_distance() function:

  use Math::Trig 'great_circle_distance';

  $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);

The I<great circle distance> is the shortest distance between two
points on a sphere.  The distance is in C<$rho> units.  The C<$rho> is
optional, it defaults to 1 (the unit sphere), therefore the distance
defaults to radians.

If you think geographically the I<theta> are longitudes: zero at the
Greenwhich meridian, eastward positive, westward negative--and the
I<phi> are latitudes: zero at the North Pole, northward positive,
southward negative.  B<NOTE>: this formula thinks in mathematics, not
geographically: the I<phi> zero is at the North Pole, not at the
Equator on the west coast of Africa (Bay of Guinea).  You need to
subtract your geographical coordinates from I<pi/2> (also known as 90
degrees).

  $distance = great_circle_distance($lon0, pi/2 - $lat0,
                                    $lon1, pi/2 - $lat1, $rho);

The direction you must follow the great circle (also known as I<bearing>)
can be computed by the great_circle_direction() function:

  use Math::Trig 'great_circle_direction';

  $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);

(Alias 'great_circle_bearing' is also available.)
The result is in radians, zero indicating straight north, pi or -pi
straight south, pi/2 straight west, and -pi/2 straight east.

You can inversely compute the destination if you know the
starting point, direction, and distance:

  use Math::Trig 'great_circle_destination';

  # thetad and phid are the destination coordinates,
  # dird is the final direction at the destination.

  ($thetad, $phid, $dird) =
    great_circle_destination($theta, $phi, $direction, $distance);

or the midpoint if you know the end points:

  use Math::Trig 'great_circle_midpoint';

  ($thetam, $phim) =
    great_circle_midpoint($theta0, $phi0, $theta1, $phi1);

The great_circle_midpoint() is just a special case of

  use Math::Trig 'great_circle_waypoint';

  ($thetai, $phii) =
    great_circle_waypoint($theta0, $phi0, $theta1, $phi1, $way);

Where the $way is a value from zero ($theta0, $phi0) to one ($theta1,
$phi1).  Note that antipodal points (where their distance is I<pi>
radians) do not have waypoints between them (they would have an an
"equator" between them), and therefore C<undef> is returned for
antipodal points.  If the points are the same and the distance
therefore zero and all waypoints therefore identical, the first point
(either point) is returned.

The thetas, phis, direction, and distance in the above are all in radians.

You can import all the great circle formulas by

  use Math::Trig ':great_circle';

Notice that the resulting directions might be somewhat surprising if
you are looking at a flat worldmap: in such map projections the great
circles quite often do not look like the shortest routes-- but for
example the shortest possible routes from Europe or North America to
Asia do often cross the polar regions.

=head1 EXAMPLES

To calculate the distance between London (51.3N 0.5W) and Tokyo
(35.7N 139.8E) in kilometers:

        use Math::Trig qw(great_circle_distance deg2rad);

        # Notice the 90 - latitude: phi zero is at the North Pole.
	sub NESW { deg2rad($_[0]), deg2rad(90 - $_[1]) }
	my @L = NESW( -0.5, 51.3);
        my @T = NESW(139.8, 35.7);
        my $km = great_circle_distance(@L, @T, 6378); # About 9600 km.

The direction you would have to go from London to Tokyo (in radians,
straight north being zero, straight east being pi/2).

        use Math::Trig qw(great_circle_direction);

        my $rad = great_circle_direction(@L, @T); # About 0.547 or 0.174 pi.

The midpoint between London and Tokyo being

        use Math::Trig qw(great_circle_midpoint);

        my @M = great_circle_midpoint(@L, @T);

or about 68.11N 24.74E, in the Finnish Lapland.

=head2 CAVEAT FOR GREAT CIRCLE FORMULAS

The answers may be off by few percentages because of the irregular
(slightly aspherical) form of the Earth.  The errors are at worst
about 0.55%, but generally below 0.3%.

=head1 BUGS

Saying C<use Math::Trig;> exports many mathematical routines in the
caller environment and even overrides some (C<sin>, C<cos>).  This is
construed as a feature by the Authors, actually... ;-)

The code is not optimized for speed, especially because we use
C<Math::Complex> and thus go quite near complex numbers while doing
the computations even when the arguments are not. This, however,
cannot be completely avoided if we want things like C<asin(2)> to give
an answer instead of giving a fatal runtime error.

Do not attempt navigation using these formulas.

=head1 AUTHORS

Jarkko Hietaniemi <F<jhi at iki.fi>> and 
Raphael Manfredi <F<Raphael_Manfredi at pobox.com>>.

=cut

# eof

--- NEW FILE: Complex.pm ---
#
# Complex numbers and associated mathematical functions
# -- Raphael Manfredi	Since Sep 1996
# -- Jarkko Hietaniemi	Since Mar 1997
# -- Daniel S. Lewart	Since Sep 1997
#

package Math::Complex;

use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf);

$VERSION = 1.35;

BEGIN {
    unless ($^O eq 'unicosmk') {
        my $e = $!;
	# We do want an arithmetic overflow, Inf INF inf Infinity:.
        undef $Inf unless eval <<'EOE' and $Inf =~ /^inf(?:inity)?$/i;
	  local $SIG{FPE} = sub {die};
[...1934 lines suppressed...]
use BigFloat, since Perl has currently no rule to disambiguate a '+'
operation (for instance) between two overloaded entities.

In Cray UNICOS there is some strange numerical instability that results
in root(), cos(), sin(), cosh(), sinh(), losing accuracy fast.  Beware.
The bug may be in UNICOS math libs, in UNICOS C compiler, in Math::Complex.
Whatever it is, it does not manifest itself anywhere else where Perl runs.

=head1 AUTHORS

Daniel S. Lewart <F<d-lewart at uiuc.edu>>

Original authors Raphael Manfredi <F<Raphael_Manfredi at pobox.com>> and
Jarkko Hietaniemi <F<jhi at iki.fi>>

=cut

1;

# eof




More information about the dslinux-commit mailing list